Driver Basics¶
Driver Entry and Exit points¶
- module_init ( x)
driver initialization entry point
Parameters
x
function to be run at kernel boot time or module insertion
Description
module_init() will either be called during do_initcalls() (if builtin) or at module insertion time (if a module). There can only be one per module.
- module_exit ( x)
driver exit entry point
Parameters
x
function to be run when driver is removed
Description
module_exit() will wrap the driver clean-up code with cleanup_module() when used with rmmod when the driver is a module. If the driver is statically compiled into the kernel, module_exit() has no effect. There can only be one per module.
Driver device table¶
- struct pci_device_id
PCI device ID structure
Definition
struct pci_device_id {
__u32 vendor, device;
__u32 subvendor, subdevice;
__u32 class, class_mask;
kernel_ulong_t driver_data;
};
Members
vendor
Vendor ID to match (or PCI_ANY_ID)
device
Device ID to match (or PCI_ANY_ID)
subvendor
Subsystem vendor ID to match (or PCI_ANY_ID)
subdevice
Subsystem device ID to match (or PCI_ANY_ID)
class
Device class, subclass, and “interface” to match. See Appendix D of the PCI Local Bus Spec or include/linux/pci_ids.h for a full list of classes. Most drivers do not need to specify class/class_mask as vendor/device is normally sufficient.
class_mask
Limit which sub-fields of the class field are compared. See drivers/scsi/sym53c8xx_2/ for example of usage.
driver_data
Data private to the driver. Most drivers don’t need to use driver_data field. Best practice is to use driver_data as an index into a static list of equivalent device types, instead of using it as a pointer.
- struct usb_device_id
identifies USB devices for probing and hotplugging
Definition
struct usb_device_id {
__u16 match_flags;
__u16 idVendor;
__u16 idProduct;
__u16 bcdDevice_lo;
__u16 bcdDevice_hi;
__u8 bDeviceClass;
__u8 bDeviceSubClass;
__u8 bDeviceProtocol;
__u8 bInterfaceClass;
__u8 bInterfaceSubClass;
__u8 bInterfaceProtocol;
__u8 bInterfaceNumber;
kernel_ulong_t driver_info ;
};
Members
match_flags
Bit mask controlling which of the other fields are used to match against new devices. Any field except for driver_info may be used, although some only make sense in conjunction with other fields. This is usually set by a USB_DEVICE_*() macro, which sets all other fields in this structure except for driver_info.
idVendor
USB vendor ID for a device; numbers are assigned by the USB forum to its members.
idProduct
Vendor-assigned product ID.
bcdDevice_lo
Low end of range of vendor-assigned product version numbers. This is also used to identify individual product versions, for a range consisting of a single device.
bcdDevice_hi
High end of version number range. The range of product versions is inclusive.
bDeviceClass
Class of device; numbers are assigned by the USB forum. Products may choose to implement classes, or be vendor-specific. Device classes specify behavior of all the interfaces on a device.
bDeviceSubClass
Subclass of device; associated with bDeviceClass.
bDeviceProtocol
Protocol of device; associated with bDeviceClass.
bInterfaceClass
Class of interface; numbers are assigned by the USB forum. Products may choose to implement classes, or be vendor-specific. Interface classes specify behavior only of a given interface; other interfaces may support other classes.
bInterfaceSubClass
Subclass of interface; associated with bInterfaceClass.
bInterfaceProtocol
Protocol of interface; associated with bInterfaceClass.
bInterfaceNumber
Number of interface; composite devices may use fixed interface numbers to differentiate between vendor-specific interfaces.
driver_info
Holds information used by the driver. Usually it holds a pointer to a descriptor understood by the driver, or perhaps device flags.
Description
In most cases, drivers will create a table of device IDs by using USB_DEVICE(), or similar macros designed for that purpose. They will then export it to userspace using MODULE_DEVICE_TABLE(), and provide it to the USB core through their usb_driver structure.
See the usb_match_id()
function for information about how matches are
performed. Briefly, you will normally use one of several macros to help
construct these entries. Each entry you provide will either identify
one or more specific products, or will identify a class of products
which have agreed to behave the same. You should put the more specific
matches towards the beginning of your table, so that driver_info can
record quirks of specific products.
- struct mdio_device_id
identifies PHY devices on an MDIO/MII bus
Definition
struct mdio_device_id {
__u32 phy_id;
__u32 phy_id_mask;
};
Members
phy_id
The result of (mdio_read(
MII_PHYSID1
) << 16 | mdio_read(MII_PHYSID2
)) & phy_id_mask for this PHY typephy_id_mask
Defines the significant bits of phy_id. A value of 0 is used to terminate an array of struct mdio_device_id.
- struct amba_id
identifies a device on an AMBA bus
Definition
struct amba_id {
unsigned int id;
unsigned int mask;
void *data;
};
Members
id
The significant bits if the hardware device ID
mask
Bitmask specifying which bits of the id field are significant when matching. A driver binds to a device when ((hardware device ID) & mask) == id.
data
Private data used by the driver.
- struct mips_cdmm_device_id
identifies devices in MIPS CDMM bus
Definition
struct mips_cdmm_device_id {
__u8 type;
};
Members
type
Device type identifier.
- struct mei_cl_device_id
MEI client device identifier
Definition
struct mei_cl_device_id {
char name[MEI_CL_NAME_SIZE];
uuid_le uuid;
__u8 version;
kernel_ulong_t driver_info;
};
Members
name
helper name
uuid
client uuid
version
client protocol version
driver_info
information used by the driver.
Description
identifies mei client device by uuid and name
- struct rio_device_id
RIO device identifier
Definition
struct rio_device_id {
__u16 did, vid;
__u16 asm_did, asm_vid;
};
Members
did
RapidIO device ID
vid
RapidIO vendor ID
asm_did
RapidIO assembly device ID
asm_vid
RapidIO assembly vendor ID
Description
Identifies a RapidIO device based on both the device/vendor IDs and the assembly device/vendor IDs.
- struct fsl_mc_device_id
MC object device identifier
Definition
struct fsl_mc_device_id {
__u16 vendor;
const char obj_type[16];
};
Members
vendor
vendor ID
obj_type
MC object type
Description
Type of entries in the “device Id” table for MC object devices supported by a MC object device driver. The last entry of the table has vendor set to 0x0
- struct tb_service_id
Thunderbolt service identifiers
Definition
struct tb_service_id {
__u32 match_flags;
char protocol_key[8 + 1];
__u32 protocol_id;
__u32 protocol_version;
__u32 protocol_revision;
kernel_ulong_t driver_data;
};
Members
match_flags
Flags used to match the structure
protocol_key
Protocol key the service supports
protocol_id
Protocol id the service supports
protocol_version
Version of the protocol
protocol_revision
Revision of the protocol software
driver_data
Driver specific data
Description
Thunderbolt XDomain services are exposed as devices where each device carries the protocol information the service supports. Thunderbolt XDomain service drivers match against that information.
- struct typec_device_id
USB Type-C alternate mode identifiers
Definition
struct typec_device_id {
__u16 svid;
__u8 mode;
kernel_ulong_t driver_data;
};
Members
svid
Standard or Vendor ID
mode
Mode index
driver_data
Driver specific data
- struct tee_client_device_id
tee based device identifier
Definition
struct tee_client_device_id {
uuid_t uuid;
};
Members
uuid
For TEE based client devices we use the device uuid as the identifier.
- struct wmi_device_id
WMI device identifier
Definition
struct wmi_device_id {
const char guid_string[UUID_STRING_LEN+1];
const void *context;
};
Members
guid_string
36 char string of the form fa50ff2b-f2e8-45de-83fa-65417f2f49ba
context
pointer to driver specific data
- struct mhi_device_id
MHI device identification
Definition
struct mhi_device_id {
const char chan[MHI_NAME_SIZE];
kernel_ulong_t driver_data;
};
Members
chan
MHI channel name
driver_data
driver data;
Delaying, scheduling, and timer routines¶
- struct prev_cputime
snapshot of system and user cputime
Definition
struct prev_cputime {
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE;
u64 utime;
u64 stime;
raw_spinlock_t lock;
#endif;
};
Members
utime
time spent in user mode
stime
time spent in system mode
lock
protects the above two fields
Description
Stores previous user/system time values such that we can guarantee monotonicity.
- struct util_est
Estimation utilization of FAIR tasks
Definition
struct util_est {
unsigned int enqueued;
unsigned int ewma;
#define UTIL_EST_WEIGHT_SHIFT 2;
};
Members
enqueued
instantaneous estimated utilization of a task/cpu
ewma
the Exponential Weighted Moving Average (EWMA) utilization of a task
Description
Support data structure to track an Exponential Weighted Moving Average (EWMA) of a FAIR task’s utilization. New samples are added to the moving average each time a task completes an activation. Sample’s weight is chosen so that the EWMA will be relatively insensitive to transient changes to the task’s workload.
The enqueued attribute has a slightly different meaning for tasks and cpus: - task: the task’s util_avg at last task dequeue time - cfs_rq: the sum of util_est.enqueued for each RUNNABLE task on that CPU Thus, the util_est.enqueued of a task represents the contribution on the estimated utilization of the CPU where that task is currently enqueued.
Only for tasks we track a moving average of the past instantaneous estimated utilization. This allows to absorb sporadic drops in utilization of an otherwise almost periodic task.
-
int pid_alive(const struct task_struct *p)¶
check that a task structure is not stale
Parameters
const struct task_struct * p
Task structure to be checked.
Description
Test if a process is not yet dead (at most zombie state) If pid_alive fails, then pointers within the task structure can be stale and must not be dereferenced.
Return
1 if the process is alive. 0 otherwise.
-
int is_global_init(struct task_struct *tsk)¶
check if a task structure is init. Since init is free to have sub-threads we need to check tgid.
Parameters
struct task_struct * tsk
Task structure to be checked.
Description
Check if a task structure is the first user space task the kernel created.
Return
1 if the task structure is init. 0 otherwise.
-
int task_nice(const struct task_struct *p)¶
return the nice value of a given task.
Parameters
const struct task_struct * p
the task in question.
Return
The nice value [ -20 … 0 … 19 ].
-
bool is_idle_task(const struct task_struct *p)¶
is the specified task an idle task?
Parameters
const struct task_struct * p
the task in question.
Return
1 if p is an idle task. 0 otherwise.
-
int wake_up_process(struct task_struct *p)¶
Wake up a specific process
Parameters
struct task_struct * p
The process to be woken up.
Description
Attempt to wake up the nominated process and move it to the set of runnable processes.
Return
1 if the process was woken up, 0 if it was already running.
This function executes a full memory barrier before accessing the task state.
-
void preempt_notifier_register(struct preempt_notifier *notifier)¶
tell me when current is being preempted & rescheduled
Parameters
struct preempt_notifier * notifier
notifier struct to register
-
void preempt_notifier_unregister(struct preempt_notifier *notifier)¶
no longer interested in preemption notifications
Parameters
struct preempt_notifier * notifier
notifier struct to unregister
Description
This is not safe to call from within a preemption notifier.
- __visible void notrace preempt_schedule_notrace ( void)
preempt_schedule called by tracing
Parameters
void
no arguments
Description
The tracing infrastructure uses preempt_enable_notrace to prevent recursion and tracing preempt enabling caused by the tracing infrastructure itself. But as tracing can happen in areas coming from userspace or just about to enter userspace, a preempt enable can occur before user_exit() is called. This will cause the scheduler to be called when the system is still in usermode.
To prevent this, the preempt_enable_notrace will use this function instead of preempt_schedule() to exit user context if needed before calling the scheduler.
-
int sched_setscheduler(struct task_struct *p, int policy, const struct sched_param *param)¶
change the scheduling policy and/or RT priority of a thread.
Parameters
struct task_struct * p
the task in question.
int policy
new policy.
const struct sched_param * param
structure containing the new RT priority.
Return
0 on success. An error code otherwise.
NOTE that the task may be already dead.
-
int sched_setscheduler_nocheck(struct task_struct *p, int policy, const struct sched_param *param)¶
change the scheduling policy and/or RT priority of a thread from kernelspace.
Parameters
struct task_struct * p
the task in question.
int policy
new policy.
const struct sched_param * param
structure containing the new RT priority.
Description
Just like sched_setscheduler, only don’t bother checking if the current context has permission. For example, this is needed in stop_machine(): we create temporary high priority worker threads, but our caller might not have that capability.
Return
0 on success. An error code otherwise.
-
void yield(void)¶
yield the current processor to other threads.
Parameters
void
no arguments
Description
Do not ever use this function, there’s a 99% chance you’re doing it wrong.
The scheduler is at all times free to pick the calling task as the most
eligible task to run, if removing the yield()
call from your code breaks
it, its already broken.
Typical broken usage is:
- while (!event)
where one assumes that yield()
will let ‘the other’ process run that will
make event true. If the current task is a SCHED_FIFO task that will never
happen. Never use yield()
as a progress guarantee!!
If you want to use yield()
to wait for something, use wait_event().
If you want to use yield()
to be ‘nice’ for others, use cond_resched().
If you still want to use yield()
, do not!
-
int yield_to(struct task_struct *p, bool preempt)¶
yield the current processor to another thread in your thread group, or accelerate that thread toward the processor it’s on.
Parameters
struct task_struct * p
target task
bool preempt
whether task preemption is allowed or not
Description
It’s the caller’s job to ensure that the target task struct can’t go away on us before we can do any checks.
Return
true (>0) if we indeed boosted the target task. false (0) if we failed to boost the target. -ESRCH if there’s no task to yield to.
-
int cpupri_find_fitness(struct cpupri *cp, struct task_struct *p, struct cpumask *lowest_mask, bool (*fitness_fn)(struct task_struct *p, int cpu))¶
find the best (lowest-pri) CPU in the system
Parameters
struct cpupri * cp
The cpupri context
struct task_struct * p
The task
struct cpumask * lowest_mask
A mask to fill in with selected CPUs (or NULL)
bool (*)(struct task_struct *p, int cpu) fitness_fn
A pointer to a function to do custom checks whether the CPU fits a specific criteria so that we only return those CPUs.
Note
This function returns the recommended CPUs as calculated during the current invocation. By the time the call returns, the CPUs may have in fact changed priorities any number of times. While not ideal, it is not an issue of correctness since the normal rebalancer logic will correct any discrepancies created by racing against the uncertainty of the current priority configuration.
Return
(int)bool - CPUs were found
-
void cpupri_set(struct cpupri *cp, int cpu, int newpri)¶
update the CPU priority setting
Parameters
struct cpupri * cp
The cpupri context
int cpu
The target CPU
int newpri
The priority (INVALID-RT99) to assign to this CPU
Note
Assumes cpu_rq(cpu)->lock is locked
Return
(void)
-
int cpupri_init(struct cpupri *cp)¶
initialize the cpupri structure
Parameters
struct cpupri * cp
The cpupri context
Return
-ENOMEM on memory allocation failure.
-
void cpupri_cleanup(struct cpupri *cp)¶
clean up the cpupri structure
Parameters
struct cpupri * cp
The cpupri context
Parameters
struct cfs_rq * cfs_rq
the cfs_rq whose avg changed
int force
update regardless of how small the difference
Description
This function ‘ensures’: tg->load_avg := Sum tg->cfs_rq[]->avg.load. However, because tg->load_avg is a global value there are performance considerations.
In order to avoid having to look at the other cfs_rq’s, we use a differential update where we store the last value we propagated. This in turn allows skipping updates if the differential is ‘small’.
Updating tg’s load_avg is necessary before update_cfs_share().
Parameters
u64 now
current time, as per cfs_rq_clock_pelt()
struct cfs_rq * cfs_rq
cfs_rq to update
Description
The cfs_rq avg is the direct sum of all its entities (blocked and runnable) avg. The immediate corollary is that all (fair) tasks must be attached, see post_init_entity_util_avg().
cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
Returns true if the load decayed or we removed load.
Since both these conditions indicate a changed cfs_rq->avg.load we should
call update_tg_load_avg()
when this function returns true.
-
void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)¶
attach this entity to its cfs_rq load avg
Parameters
struct cfs_rq * cfs_rq
cfs_rq to attach to
struct sched_entity * se
sched_entity to attach
Description
Must call update_cfs_rq_load_avg()
before this, since we rely on
cfs_rq->avg.last_update_time being current.
-
void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)¶
detach this entity from its cfs_rq load avg
Parameters
struct cfs_rq * cfs_rq
cfs_rq to detach from
struct sched_entity * se
sched_entity to detach
Description
Must call update_cfs_rq_load_avg()
before this, since we rely on
cfs_rq->avg.last_update_time being current.
-
unsigned long cpu_util(int cpu)¶
Parameters
int cpu
the CPU to get the utilization of
Description
The unit of the return value must be the one of capacity so we can compare the utilization with the capacity of the CPU that is available for CFS task (ie cpu_capacity).
cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the recent utilization of currently non-runnable tasks on a CPU. It represents the amount of utilization of a CPU in the range [0..capacity_orig] where capacity_orig is the cpu_capacity available at the highest frequency (arch_scale_freq_capacity()). The utilization of a CPU converges towards a sum equal to or less than the current capacity (capacity_curr <= capacity_orig) of the CPU because it is the running time on this CPU scaled by capacity_curr.
The estimated utilization of a CPU is defined to be the maximum between its cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks currently RUNNABLE on that CPU. This allows to properly represent the expected utilization of a CPU which has just got a big task running since a long sleep period. At the same time however it preserves the benefits of the “blocked utilization” in describing the potential for other tasks waking up on the same CPU.
Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even higher than capacity_orig because of unfortunate rounding in cfs.avg.util_avg or just after migrating tasks and new task wakeups until the average stabilizes with the new running time. We need to check that the utilization stays within the range of [0..capacity_orig] and cap it if necessary. Without utilization capping, a group could be seen as overloaded (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of available capacity. We allow utilization to overshoot capacity_curr (but not capacity_orig) as it useful for predicting the capacity required after task migrations (scheduler-driven DVFS).
Return
the (estimated) utilization for the specified CPU
-
void update_sg_lb_stats(struct lb_env *env, struct sched_group *group, struct sg_lb_stats *sgs, int *sg_status)¶
Update sched_group’s statistics for load balancing.
Parameters
struct lb_env * env
The load balancing environment.
struct sched_group * group
sched_group whose statistics are to be updated.
struct sg_lb_stats * sgs
variable to hold the statistics for this group.
int * sg_status
Holds flag indicating the status of the sched_group
-
bool update_sd_pick_busiest(struct lb_env *env, struct sd_lb_stats *sds, struct sched_group *sg, struct sg_lb_stats *sgs)¶
return 1 on busiest group
Parameters
struct lb_env * env
The load balancing environment.
struct sd_lb_stats * sds
sched_domain statistics
struct sched_group * sg
sched_group candidate to be checked for being the busiest
struct sg_lb_stats * sgs
sched_group statistics
Description
Determine if sg is a busier group than the previously selected busiest group.
Return
true
if sg is a busier group than the previously selected
busiest group. false
otherwise.
-
int idle_cpu_without(int cpu, struct task_struct *p)¶
would a given CPU be idle without p ?
Parameters
int cpu
the processor on which idleness is tested.
struct task_struct * p
task which should be ignored.
Return
1 if the CPU would be idle. 0 otherwise.
-
void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)¶
Update sched_domain’s statistics for load balancing.
Parameters
struct lb_env * env
The load balancing environment.
struct sd_lb_stats * sds
variable to hold the statistics for this sched_domain.
-
void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)¶
Calculate the amount of imbalance present within the groups of a given sched_domain during load balance.
Parameters
struct lb_env * env
load balance environment
struct sd_lb_stats * sds
statistics of the sched_domain whose imbalance is to be calculated.
-
struct sched_group *find_busiest_group(struct lb_env *env)¶
Returns the busiest group within the sched_domain if there is an imbalance.
Parameters
struct lb_env * env
The load balancing environment.
Description
Also calculates the amount of runnable load which should be moved to restore balance.
Return
The busiest group if imbalance exists.
- DECLARE_COMPLETION ( work)
declare and initialize a completion structure
Parameters
work
identifier for the completion structure
Description
This macro declares and initializes a completion structure. Generally used for static declarations. You should use the _ONSTACK variant for automatic variables.
- DECLARE_COMPLETION_ONSTACK ( work)
declare and initialize a completion structure
Parameters
work
identifier for the completion structure
Description
This macro declares and initializes a completion structure on the kernel stack.
-
void __init_completion(struct completion *x)¶
Initialize a dynamically allocated completion
Parameters
struct completion * x
pointer to completion structure that is to be initialized
Description
This inline function will initialize a dynamically created completion structure.
-
void reinit_completion(struct completion *x)¶
reinitialize a completion structure
Parameters
struct completion * x
pointer to completion structure that is to be reinitialized
Description
This inline function should be used to reinitialize a completion structure so it can be reused. This is especially important after complete_all() is used.
-
unsigned long __round_jiffies(unsigned long j, int cpu)¶
function to round jiffies to a full second
Parameters
unsigned long j
the time in (absolute) jiffies that should be rounded
int cpu
the processor number on which the timeout will happen
Description
__round_jiffies()
rounds an absolute time in the future (in jiffies)
up or down to (approximately) full seconds. This is useful for timers
for which the exact time they fire does not matter too much, as long as
they fire approximately every X seconds.
By rounding these timers to whole seconds, all such timers will fire at the same time, rather than at various times spread out. The goal of this is to have the CPU wake up less, which saves power.
The exact rounding is skewed for each processor to avoid all processors firing at the exact same time, which could lead to lock contention or spurious cache line bouncing.
The return value is the rounded version of the j parameter.
-
unsigned long __round_jiffies_relative(unsigned long j, int cpu)¶
function to round jiffies to a full second
Parameters
unsigned long j
the time in (relative) jiffies that should be rounded
int cpu
the processor number on which the timeout will happen
Description
__round_jiffies_relative()
rounds a time delta in the future (in jiffies)
up or down to (approximately) full seconds. This is useful for timers
for which the exact time they fire does not matter too much, as long as
they fire approximately every X seconds.
By rounding these timers to whole seconds, all such timers will fire at the same time, rather than at various times spread out. The goal of this is to have the CPU wake up less, which saves power.
The exact rounding is skewed for each processor to avoid all processors firing at the exact same time, which could lead to lock contention or spurious cache line bouncing.
The return value is the rounded version of the j parameter.
-
unsigned long round_jiffies(unsigned long j)¶
function to round jiffies to a full second
Parameters
unsigned long j
the time in (absolute) jiffies that should be rounded
Description
round_jiffies()
rounds an absolute time in the future (in jiffies)
up or down to (approximately) full seconds. This is useful for timers
for which the exact time they fire does not matter too much, as long as
they fire approximately every X seconds.
By rounding these timers to whole seconds, all such timers will fire at the same time, rather than at various times spread out. The goal of this is to have the CPU wake up less, which saves power.
The return value is the rounded version of the j parameter.
-
unsigned long round_jiffies_relative(unsigned long j)¶
function to round jiffies to a full second
Parameters
unsigned long j
the time in (relative) jiffies that should be rounded
Description
round_jiffies_relative()
rounds a time delta in the future (in jiffies)
up or down to (approximately) full seconds. This is useful for timers
for which the exact time they fire does not matter too much, as long as
they fire approximately every X seconds.
By rounding these timers to whole seconds, all such timers will fire at the same time, rather than at various times spread out. The goal of this is to have the CPU wake up less, which saves power.
The return value is the rounded version of the j parameter.
-
unsigned long __round_jiffies_up(unsigned long j, int cpu)¶
function to round jiffies up to a full second
Parameters
unsigned long j
the time in (absolute) jiffies that should be rounded
int cpu
the processor number on which the timeout will happen
Description
This is the same as __round_jiffies()
except that it will never
round down. This is useful for timeouts for which the exact time
of firing does not matter too much, as long as they don’t fire too
early.
-
unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)¶
function to round jiffies up to a full second
Parameters
unsigned long j
the time in (relative) jiffies that should be rounded
int cpu
the processor number on which the timeout will happen
Description
This is the same as __round_jiffies_relative()
except that it will never
round down. This is useful for timeouts for which the exact time
of firing does not matter too much, as long as they don’t fire too
early.
-
unsigned long round_jiffies_up(unsigned long j)¶
function to round jiffies up to a full second
Parameters
unsigned long j
the time in (absolute) jiffies that should be rounded
Description
This is the same as round_jiffies()
except that it will never
round down. This is useful for timeouts for which the exact time
of firing does not matter too much, as long as they don’t fire too
early.
-
unsigned long round_jiffies_up_relative(unsigned long j)¶
function to round jiffies up to a full second
Parameters
unsigned long j
the time in (relative) jiffies that should be rounded
Description
This is the same as round_jiffies_relative()
except that it will never
round down. This is useful for timeouts for which the exact time
of firing does not matter too much, as long as they don’t fire too
early.
-
void init_timer_key(struct timer_list *timer, void (*func)(struct timer_list*), unsigned int flags, const char *name, struct lock_class_key *key)¶
initialize a timer
Parameters
struct timer_list * timer
the timer to be initialized
void (*)(struct timer_list *) func
timer callback function
unsigned int flags
timer flags
const char * name
name of the timer
struct lock_class_key * key
lockdep class key of the fake lock used for tracking timer sync lock dependencies
Description
init_timer_key()
must be done to a timer prior calling any of the
other timer functions.
-
int mod_timer_pending(struct timer_list *timer, unsigned long expires)¶
modify a pending timer’s timeout
Parameters
struct timer_list * timer
the pending timer to be modified
unsigned long expires
new timeout in jiffies
Description
mod_timer_pending()
is the same for pending timers as mod_timer()
,
but will not re-activate and modify already deleted timers.
It is useful for unserialized use of timers.
-
int mod_timer(struct timer_list *timer, unsigned long expires)¶
modify a timer’s timeout
Parameters
struct timer_list * timer
the timer to be modified
unsigned long expires
new timeout in jiffies
Description
mod_timer()
is a more efficient way to update the expire field of an
active timer (if the timer is inactive it will be activated)
mod_timer(timer, expires) is equivalent to:
del_timer(timer); timer->expires = expires; add_timer(timer);
Note that if there are multiple unserialized concurrent users of the
same timer, then mod_timer()
is the only safe way to modify the timeout,
since add_timer()
cannot modify an already running timer.
The function returns whether it has modified a pending timer or not.
(ie. mod_timer()
of an inactive timer returns 0, mod_timer()
of an
active timer returns 1.)
-
int timer_reduce(struct timer_list *timer, unsigned long expires)¶
Modify a timer’s timeout if it would reduce the timeout
Parameters
struct timer_list * timer
The timer to be modified
unsigned long expires
New timeout in jiffies
Description
timer_reduce()
is very similar to mod_timer()
, except that it will only
modify a running timer if that would reduce the expiration time (it will
start a timer that isn’t running).
-
void add_timer(struct timer_list *timer)¶
start a timer
Parameters
struct timer_list * timer
the timer to be added
Description
The kernel will do a ->function(timer) callback from the timer interrupt at the ->expires point in the future. The current time is ‘jiffies’.
The timer’s ->expires, ->function fields must be set prior calling this function.
Timers with an ->expires field in the past will be executed in the next timer tick.
-
void add_timer_on(struct timer_list *timer, int cpu)¶
start a timer on a particular CPU
Parameters
struct timer_list * timer
the timer to be added
int cpu
the CPU to start it on
Description
This is not very scalable on SMP. Double adds are not possible.
-
int del_timer(struct timer_list *timer)¶
deactivate a timer.
Parameters
struct timer_list * timer
the timer to be deactivated
Description
del_timer()
deactivates a timer - this works on both active and inactive
timers.
The function returns whether it has deactivated a pending timer or not.
(ie. del_timer()
of an inactive timer returns 0, del_timer()
of an
active timer returns 1.)
-
int try_to_del_timer_sync(struct timer_list *timer)¶
Try to deactivate a timer
Parameters
struct timer_list * timer
timer to delete
Description
This function tries to deactivate a timer. Upon successful (ret >= 0) exit the timer is not queued and the handler is not running on any CPU.
-
int del_timer_sync(struct timer_list *timer)¶
deactivate a timer and wait for the handler to finish.
Parameters
struct timer_list * timer
the timer to be deactivated
Description
This function only differs from del_timer()
on SMP: besides deactivating
the timer it also makes sure the handler has finished executing on other
CPUs.
Synchronization rules: Callers must prevent restarting of the timer,
otherwise this function is meaningless. It must not be called from
interrupt contexts unless the timer is an irqsafe one. The caller must
not hold locks which would prevent completion of the timer’s
handler. The timer’s handler must not call add_timer_on()
. Upon exit the
timer is not queued and the handler is not running on any CPU.
Note
- For !irqsafe timers, you must not hold locks that are held in
interrupt context while calling this function. Even if the lock has nothing to do with the timer in question. Here’s why:
CPU0 CPU1 ---- ---- <SOFTIRQ> call_timer_fn(); base->running_timer = mytimer; spin_lock_irq(somelock); <IRQ> spin_lock(somelock); del_timer_sync(mytimer); while (base->running_timer == mytimer);
Now del_timer_sync()
will never return and never release somelock.
The interrupt on the other CPU is waiting to grab somelock but
it has interrupted the softirq that CPU0 is waiting to finish.
The function returns whether it has deactivated a pending timer or not.
-
signed long schedule_timeout(signed long timeout)¶
sleep until timeout
Parameters
signed long timeout
timeout value in jiffies
Description
Make the current task sleep until timeout jiffies have elapsed. The function behavior depends on the current task state (see also set_current_state() description):
TASK_RUNNING
- the scheduler is called, but the task does not sleep
at all. That happens because sched_submit_work() does nothing for
tasks in TASK_RUNNING
state.
TASK_UNINTERRUPTIBLE
- at least timeout jiffies are guaranteed to
pass before the routine returns unless the current task is explicitly
woken up, (e.g. by wake_up_process()
).
TASK_INTERRUPTIBLE
- the routine may return early if a signal is
delivered to the current task or the current task is explicitly woken
up.
The current task state is guaranteed to be TASK_RUNNING
when this
routine returns.
Specifying a timeout value of MAX_SCHEDULE_TIMEOUT
will schedule
the CPU away without a bound on the timeout. In this case the return
value will be MAX_SCHEDULE_TIMEOUT
.
Returns 0 when the timer has expired otherwise the remaining time in jiffies will be returned. In all cases the return value is guaranteed to be non-negative.
-
void msleep(unsigned int msecs)¶
sleep safely even with waitqueue interruptions
Parameters
unsigned int msecs
Time in milliseconds to sleep for
-
unsigned long msleep_interruptible(unsigned int msecs)¶
sleep waiting for signals
Parameters
unsigned int msecs
Time in milliseconds to sleep for
-
void usleep_range(unsigned long min, unsigned long max)¶
Sleep for an approximate time
Parameters
unsigned long min
Minimum time in usecs to sleep
unsigned long max
Maximum time in usecs to sleep
Description
In non-atomic context where the exact wakeup time is flexible, use
usleep_range()
instead of udelay(). The sleep improves responsiveness
by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
power usage by allowing hrtimers to take advantage of an already-
scheduled interrupt instead of scheduling a new one just for this sleep.
Wait queues and Wake events¶
-
int waitqueue_active(struct wait_queue_head *wq_head)¶
locklessly test for waiters on the queue
Parameters
struct wait_queue_head * wq_head
the waitqueue to test for waiters
Description
returns true if the wait list is not empty
NOTE
this function is lockless and requires care, incorrect usage _will_ lead to sporadic and non-obvious failure.
Use either while holding wait_queue_head::lock or when used for wakeups with an extra smp_mb() like:
CPU0 - waker CPU1 - waiter
for (;;) {
@cond = true; prepare_to_wait(&wq_head, &wait, state);
smp_mb(); // smp_mb() from set_current_state()
if (waitqueue_active(wq_head)) if (@cond)
wake_up(wq_head); break;
schedule();
}
finish_wait(&wq_head, &wait);
Because without the explicit smp_mb() it’s possible for the
waitqueue_active()
load to get hoisted over the cond store such that we’ll
observe an empty wait list while the waiter might not observe cond.
Also note that this ‘optimization’ trades a spin_lock() for an smp_mb(), which (when the lock is uncontended) are of roughly equal cost.
-
bool wq_has_single_sleeper(struct wait_queue_head *wq_head)¶
check if there is only one sleeper
Parameters
struct wait_queue_head * wq_head
wait queue head
Description
Returns true of wq_head has only one sleeper on the list.
Please refer to the comment for waitqueue_active.
-
bool wq_has_sleeper(struct wait_queue_head *wq_head)¶
check if there are any waiting processes
Parameters
struct wait_queue_head * wq_head
wait queue head
Description
Returns true if wq_head has waiting processes
Please refer to the comment for waitqueue_active.
- wait_event ( wq_head, condition)
sleep until a condition gets true
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
- wait_event_freezable ( wq_head, condition)
sleep (or freeze) until a condition gets true
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
Description
The process is put to sleep (TASK_INTERRUPTIBLE – so as not to contribute to system load) until the condition evaluates to true. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
- wait_event_timeout ( wq_head, condition, timeout)
sleep until a condition gets true or a timeout elapses
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
timeout
timeout, in jiffies
Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
Return
0 if the condition evaluated to false
after the timeout elapsed,
1 if the condition evaluated to true
after the timeout elapsed,
or the remaining jiffies (at least 1) if the condition evaluated
to true
before the timeout elapsed.
- wait_event_cmd ( wq_head, condition, cmd1, cmd2)
sleep until a condition gets true
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
cmd1
the command will be executed before sleep
cmd2
the command will be executed after sleep
Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
- wait_event_interruptible ( wq_head, condition)
sleep until a condition gets true
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal is received. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to true.
- wait_event_interruptible_timeout ( wq_head, condition, timeout)
sleep until a condition gets true or a timeout elapses
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
timeout
timeout, in jiffies
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal is received. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
Return
0 if the condition evaluated to false
after the timeout elapsed,
1 if the condition evaluated to true
after the timeout elapsed,
the remaining jiffies (at least 1) if the condition evaluated
to true
before the timeout elapsed, or -ERESTARTSYS
if it was
interrupted by a signal.
- wait_event_hrtimeout ( wq_head, condition, timeout)
sleep until a condition gets true or a timeout elapses
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
timeout
timeout, as a ktime_t
Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true or a signal is received. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
The function returns 0 if condition became true, or -ETIME if the timeout elapsed.
- wait_event_interruptible_hrtimeout ( wq, condition, timeout)
sleep until a condition gets true or a timeout elapses
Parameters
wq
the waitqueue to wait on
condition
a C expression for the event to wait for
timeout
timeout, as a ktime_t
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal is received. The condition is checked each time the waitqueue wq is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
The function returns 0 if condition became true, -ERESTARTSYS if it was interrupted by a signal, or -ETIME if the timeout elapsed.
- wait_event_idle ( wq_head, condition)
wait for a condition without contributing to system load
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
Description
The process is put to sleep (TASK_IDLE) until the condition evaluates to true. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
- wait_event_idle_exclusive ( wq_head, condition)
wait for a condition with contributing to system load
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
Description
The process is put to sleep (TASK_IDLE) until the condition evaluates to true. The condition is checked each time the waitqueue wq_head is woken up.
The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag set thus if other processes wait on the same list, when this process is woken further processes are not considered.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
- wait_event_idle_timeout ( wq_head, condition, timeout)
sleep without load until a condition becomes true or a timeout elapses
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
timeout
timeout, in jiffies
Description
The process is put to sleep (TASK_IDLE) until the condition evaluates to true. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
Return
0 if the condition evaluated to false
after the timeout elapsed,
1 if the condition evaluated to true
after the timeout elapsed,
or the remaining jiffies (at least 1) if the condition evaluated
to true
before the timeout elapsed.
- wait_event_idle_exclusive_timeout ( wq_head, condition, timeout)
sleep without load until a condition becomes true or a timeout elapses
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
timeout
timeout, in jiffies
Description
The process is put to sleep (TASK_IDLE) until the condition evaluates to true. The condition is checked each time the waitqueue wq_head is woken up.
The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag set thus if other processes wait on the same list, when this process is woken further processes are not considered.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
Return
0 if the condition evaluated to false
after the timeout elapsed,
1 if the condition evaluated to true
after the timeout elapsed,
or the remaining jiffies (at least 1) if the condition evaluated
to true
before the timeout elapsed.
- wait_event_interruptible_locked ( wq, condition)
sleep until a condition gets true
Parameters
wq
the waitqueue to wait on
condition
a C expression for the event to wait for
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal is received. The condition is checked each time the waitqueue wq is woken up.
It must be called with wq.lock being held. This spinlock is unlocked while sleeping but condition testing is done while lock is held and when this macro exits the lock is held.
The lock is locked/unlocked using spin_lock()/spin_unlock() functions which must match the way they are locked/unlocked outside of this macro.
wake_up_locked() has to be called after changing any variable that could change the result of the wait condition.
The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to true.
- wait_event_interruptible_locked_irq ( wq, condition)
sleep until a condition gets true
Parameters
wq
the waitqueue to wait on
condition
a C expression for the event to wait for
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal is received. The condition is checked each time the waitqueue wq is woken up.
It must be called with wq.lock being held. This spinlock is unlocked while sleeping but condition testing is done while lock is held and when this macro exits the lock is held.
The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq() functions which must match the way they are locked/unlocked outside of this macro.
wake_up_locked() has to be called after changing any variable that could change the result of the wait condition.
The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to true.
- wait_event_interruptible_exclusive_locked ( wq, condition)
sleep exclusively until a condition gets true
Parameters
wq
the waitqueue to wait on
condition
a C expression for the event to wait for
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal is received. The condition is checked each time the waitqueue wq is woken up.
It must be called with wq.lock being held. This spinlock is unlocked while sleeping but condition testing is done while lock is held and when this macro exits the lock is held.
The lock is locked/unlocked using spin_lock()/spin_unlock() functions which must match the way they are locked/unlocked outside of this macro.
The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag set thus when other process waits process on the list if this process is awaken further processes are not considered.
wake_up_locked() has to be called after changing any variable that could change the result of the wait condition.
The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to true.
- wait_event_interruptible_exclusive_locked_irq ( wq, condition)
sleep until a condition gets true
Parameters
wq
the waitqueue to wait on
condition
a C expression for the event to wait for
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal is received. The condition is checked each time the waitqueue wq is woken up.
It must be called with wq.lock being held. This spinlock is unlocked while sleeping but condition testing is done while lock is held and when this macro exits the lock is held.
The lock is locked/unlocked using spin_lock_irq()/spin_unlock_irq() functions which must match the way they are locked/unlocked outside of this macro.
The process is put on the wait queue with an WQ_FLAG_EXCLUSIVE flag set thus when other process waits process on the list if this process is awaken further processes are not considered.
wake_up_locked() has to be called after changing any variable that could change the result of the wait condition.
The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to true.
- wait_event_killable ( wq_head, condition)
sleep until a condition gets true
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
Description
The process is put to sleep (TASK_KILLABLE) until the condition evaluates to true or a signal is received. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
The function will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to true.
- wait_event_killable_timeout ( wq_head, condition, timeout)
sleep until a condition gets true or a timeout elapses
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
timeout
timeout, in jiffies
Description
The process is put to sleep (TASK_KILLABLE) until the condition evaluates to true or a kill signal is received. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
Return
0 if the condition evaluated to false
after the timeout elapsed,
1 if the condition evaluated to true
after the timeout elapsed,
the remaining jiffies (at least 1) if the condition evaluated
to true
before the timeout elapsed, or -ERESTARTSYS
if it was
interrupted by a kill signal.
Only kill signals interrupt this process.
- wait_event_lock_irq_cmd ( wq_head, condition, lock, cmd)
sleep until a condition gets true. The condition is checked under the lock. This is expected to be called with the lock taken.
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
lock
a locked spinlock_t, which will be released before cmd and schedule() and reacquired afterwards.
cmd
a command which is invoked outside the critical section before sleep
Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
This is supposed to be called while holding the lock. The lock is dropped before invoking the cmd and going to sleep and is reacquired afterwards.
- wait_event_lock_irq ( wq_head, condition, lock)
sleep until a condition gets true. The condition is checked under the lock. This is expected to be called with the lock taken.
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
lock
a locked spinlock_t, which will be released before schedule() and reacquired afterwards.
Description
The process is put to sleep (TASK_UNINTERRUPTIBLE) until the condition evaluates to true. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
This is supposed to be called while holding the lock. The lock is dropped before going to sleep and is reacquired afterwards.
- wait_event_interruptible_lock_irq_cmd ( wq_head, condition, lock, cmd)
sleep until a condition gets true. The condition is checked under the lock. This is expected to be called with the lock taken.
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
lock
a locked spinlock_t, which will be released before cmd and schedule() and reacquired afterwards.
cmd
a command which is invoked outside the critical section before sleep
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or a signal is received. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
This is supposed to be called while holding the lock. The lock is dropped before invoking the cmd and going to sleep and is reacquired afterwards.
The macro will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to true.
- wait_event_interruptible_lock_irq ( wq_head, condition, lock)
sleep until a condition gets true. The condition is checked under the lock. This is expected to be called with the lock taken.
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
lock
a locked spinlock_t, which will be released before schedule() and reacquired afterwards.
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or signal is received. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
This is supposed to be called while holding the lock. The lock is dropped before going to sleep and is reacquired afterwards.
The macro will return -ERESTARTSYS if it was interrupted by a signal and 0 if condition evaluated to true.
- wait_event_interruptible_lock_irq_timeout ( wq_head, condition, lock, timeout)
sleep until a condition gets true or a timeout elapses. The condition is checked under the lock. This is expected to be called with the lock taken.
Parameters
wq_head
the waitqueue to wait on
condition
a C expression for the event to wait for
lock
a locked spinlock_t, which will be released before schedule() and reacquired afterwards.
timeout
timeout, in jiffies
Description
The process is put to sleep (TASK_INTERRUPTIBLE) until the condition evaluates to true or signal is received. The condition is checked each time the waitqueue wq_head is woken up.
wake_up() has to be called after changing any variable that could change the result of the wait condition.
This is supposed to be called while holding the lock. The lock is dropped before going to sleep and is reacquired afterwards.
The function returns 0 if the timeout elapsed, -ERESTARTSYS if it was interrupted by a signal, and the remaining jiffies otherwise if the condition evaluated to true before the timeout elapsed.
-
void __wake_up(struct wait_queue_head *wq_head, unsigned int mode, int nr_exclusive, void *key)¶
wake up threads blocked on a waitqueue.
Parameters
struct wait_queue_head * wq_head
the waitqueue
unsigned int mode
which threads
int nr_exclusive
how many wake-one or wake-many threads to wake up
void * key
is directly passed to the wakeup function
Description
If this function wakes up a task, it executes a full memory barrier before accessing the task state.
-
void __wake_up_sync_key(struct wait_queue_head *wq_head, unsigned int mode, void *key)¶
wake up threads blocked on a waitqueue.
Parameters
struct wait_queue_head * wq_head
the waitqueue
unsigned int mode
which threads
void * key
opaque value to be passed to wakeup targets
Description
The sync wakeup differs that the waker knows that it will schedule away soon, so while the target thread will be woken up, it will not be migrated to another CPU - ie. the two threads are ‘synchronized’ with each other. This can prevent needless bouncing between CPUs.
On UP it can prevent extra preemption.
If this function wakes up a task, it executes a full memory barrier before accessing the task state.
-
void __wake_up_locked_sync_key(struct wait_queue_head *wq_head, unsigned int mode, void *key)¶
wake up a thread blocked on a locked waitqueue.
Parameters
struct wait_queue_head * wq_head
the waitqueue
unsigned int mode
which threads
void * key
opaque value to be passed to wakeup targets
Description
The sync wakeup differs in that the waker knows that it will schedule away soon, so while the target thread will be woken up, it will not be migrated to another CPU - ie. the two threads are ‘synchronized’ with each other. This can prevent needless bouncing between CPUs.
On UP it can prevent extra preemption.
If this function wakes up a task, it executes a full memory barrier before accessing the task state.
-
void finish_wait(struct wait_queue_head *wq_head, struct wait_queue_entry *wq_entry)¶
clean up after waiting in a queue
Parameters
struct wait_queue_head * wq_head
waitqueue waited on
struct wait_queue_entry * wq_entry
wait descriptor
Description
Sets current thread back to running state and removes the wait descriptor from the given waitqueue if still queued.
High-resolution timers¶
-
ktime_t ktime_set(const s64 secs, const unsigned long nsecs)¶
Set a ktime_t variable from a seconds/nanoseconds value
Parameters
const s64 secs
seconds to set
const unsigned long nsecs
nanoseconds to set
Return
The ktime_t representation of the value.
-
int ktime_compare(const ktime_t cmp1, const ktime_t cmp2)¶
Compares two ktime_t variables for less, greater or equal
Parameters
const ktime_t cmp1
comparable1
const ktime_t cmp2
comparable2
Return
- …
cmp1 < cmp2: return <0 cmp1 == cmp2: return 0 cmp1 > cmp2: return >0
-
bool ktime_after(const ktime_t cmp1, const ktime_t cmp2)¶
Compare if a ktime_t value is bigger than another one.
Parameters
const ktime_t cmp1
comparable1
const ktime_t cmp2
comparable2
Return
true if cmp1 happened after cmp2.
-
bool ktime_before(const ktime_t cmp1, const ktime_t cmp2)¶
Compare if a ktime_t value is smaller than another one.
Parameters
const ktime_t cmp1
comparable1
const ktime_t cmp2
comparable2
Return
true if cmp1 happened before cmp2.
-
bool ktime_to_timespec64_cond(const ktime_t kt, struct timespec64 *ts)¶
convert a ktime_t variable to timespec64 format only if the variable contains data
Parameters
const ktime_t kt
the ktime_t variable to convert
struct timespec64 * ts
the timespec variable to store the result in
Return
true
if there was a successful conversion, false
if kt was 0.
- struct hrtimer
the basic hrtimer structure
Definition
struct hrtimer {
struct timerqueue_node node;
ktime_t _softexpires;
enum hrtimer_restart (*function)(struct hrtimer *);
struct hrtimer_clock_base *base;
u8 state;
u8 is_rel;
u8 is_soft;
u8 is_hard;
};
Members
node
timerqueue node, which also manages node.expires, the absolute expiry time in the hrtimers internal representation. The time is related to the clock on which the timer is based. Is setup by adding slack to the _softexpires value. For non range timers identical to _softexpires.
_softexpires
the absolute earliest expiry time of the hrtimer. The time which was given as expiry time when the timer was armed.
function
timer expiry callback function
base
pointer to the timer base (per cpu and per clock)
state
state information (See bit values above)
is_rel
Set if the timer was armed relative
is_soft
Set if hrtimer will be expired in soft interrupt context.
is_hard
Set if hrtimer will be expired in hard interrupt context even on RT.
Description
The hrtimer structure must be initialized by hrtimer_init()
- struct hrtimer_sleeper
simple sleeper structure
Definition
struct hrtimer_sleeper {
struct hrtimer timer;
struct task_struct *task;
};
Members
timer
embedded timer structure
task
task to wake up
Description
task is set to NULL, when the timer expires.
- struct hrtimer_clock_base
the timer base for a specific clock
Definition
struct hrtimer_clock_base {
struct hrtimer_cpu_base *cpu_base;
unsigned int index;
clockid_t clockid;
seqcount_t seq;
struct hrtimer *running;
struct timerqueue_head active;
ktime_t (*get_time)(void);
ktime_t offset;
};
Members
cpu_base
per cpu clock base
index
clock type index for per_cpu support when moving a timer to a base on another cpu.
clockid
clock id for per_cpu support
seq
seqcount around __run_hrtimer
running
pointer to the currently running hrtimer
active
red black tree root node for the active timers
get_time
function to retrieve the current time of the clock
offset
offset of this clock to the monotonic base
- struct hrtimer_cpu_base
the per cpu clock bases
Definition
struct hrtimer_cpu_base {
raw_spinlock_t lock;
unsigned int cpu;
unsigned int active_bases;
unsigned int clock_was_set_seq;
unsigned int hres_active : 1,in_hrtirq : 1,hang_detected : 1, softirq_activated : 1;
#ifdef CONFIG_HIGH_RES_TIMERS;
unsigned int nr_events;
unsigned short nr_retries;
unsigned short nr_hangs;
unsigned int max_hang_time;
#endif;
#ifdef CONFIG_PREEMPT_RT;
spinlock_t softirq_expiry_lock;
atomic_t timer_waiters;
#endif;
ktime_t expires_next;
struct hrtimer *next_timer;
ktime_t softirq_expires_next;
struct hrtimer *softirq_next_timer;
struct hrtimer_clock_base clock_base[HRTIMER_MAX_CLOCK_BASES];
};
Members
lock
lock protecting the base and associated clock bases and timers
cpu
cpu number
active_bases
Bitfield to mark bases with active timers
clock_was_set_seq
Sequence counter of clock was set events
hres_active
State of high resolution mode
in_hrtirq
hrtimer_interrupt() is currently executing
hang_detected
The last hrtimer interrupt detected a hang
softirq_activated
displays, if the softirq is raised - update of softirq related settings is not required then.
nr_events
Total number of hrtimer interrupt events
nr_retries
Total number of hrtimer interrupt retries
nr_hangs
Total number of hrtimer interrupt hangs
max_hang_time
Maximum time spent in hrtimer_interrupt
softirq_expiry_lock
Lock which is taken while softirq based hrtimer are expired
timer_waiters
A
hrtimer_cancel()
invocation waits for the timer callback to finish.expires_next
absolute time of the next event, is required for remote hrtimer enqueue; it is the total first expiry time (hard and soft hrtimer are taken into account)
next_timer
Pointer to the first expiring timer
softirq_expires_next
Time to check, if soft queues needs also to be expired
softirq_next_timer
Pointer to the first expiring softirq based timer
clock_base
array of clock bases for this cpu
Note
- next_timer is just an optimization for __remove_hrtimer().
Do not dereference the pointer because it is not reliable on cross cpu removals.
-
void hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)¶
(re)start an hrtimer
Parameters
struct hrtimer * timer
the timer to be added
ktime_t tim
expiry time
const enum hrtimer_mode mode
timer mode: absolute (HRTIMER_MODE_ABS) or relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); softirq based mode is considered for debug purpose only!
-
bool hrtimer_is_queued(struct hrtimer *timer)¶
Parameters
struct hrtimer * timer
Timer to check
Return
True if the timer is queued, false otherwise
The function can be used lockless, but it gives only a current snapshot.
-
u64 hrtimer_forward_now(struct hrtimer *timer, ktime_t interval)¶
forward the timer expiry so it expires after now
Parameters
struct hrtimer * timer
hrtimer to forward
ktime_t interval
the interval to forward
Description
Forward the timer expiry so it will expire after the current time of the hrtimer clock base. Returns the number of overruns.
Can be safely called from the callback function of timer. If called from other contexts timer must neither be enqueued nor running the callback and the caller needs to take care of serialization.
Note
This only updates the timer expiry value and does not requeue the timer.
-
u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)¶
forward the timer expiry
Parameters
struct hrtimer * timer
hrtimer to forward
ktime_t now
forward past this time
ktime_t interval
the interval to forward
Description
Forward the timer expiry so it will expire in the future. Returns the number of overruns.
Can be safely called from the callback function of timer. If called from other contexts timer must neither be enqueued nor running the callback and the caller needs to take care of serialization.
Note
This only updates the timer expiry value and does not requeue the timer.
-
void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, u64 delta_ns, const enum hrtimer_mode mode)¶
(re)start an hrtimer
Parameters
struct hrtimer * timer
the timer to be added
ktime_t tim
expiry time
u64 delta_ns
“slack” range for the timer
const enum hrtimer_mode mode
timer mode: absolute (HRTIMER_MODE_ABS) or relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); softirq based mode is considered for debug purpose only!
-
int hrtimer_try_to_cancel(struct hrtimer *timer)¶
try to deactivate a timer
Parameters
struct hrtimer * timer
hrtimer to stop
Return
0 when the timer was not active
1 when the timer was active
-1 when the timer is currently executing the callback function and cannot be stopped
-
int hrtimer_cancel(struct hrtimer *timer)¶
cancel a timer and wait for the handler to finish.
Parameters
struct hrtimer * timer
the timer to be cancelled
Return
0 when the timer was not active 1 when the timer was active
-
ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)¶
get remaining time for the timer
Parameters
const struct hrtimer * timer
the timer to read
bool adjust
adjust relative timers when CONFIG_TIME_LOW_RES=y
-
void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, enum hrtimer_mode mode)¶
initialize a timer to the given clock
Parameters
struct hrtimer * timer
the timer to be initialized
clockid_t clock_id
the clock to be used
enum hrtimer_mode mode
The modes which are relevant for intitialization: HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, HRTIMER_MODE_REL_SOFT
Description
The PINNED variants of the above can be handed in, but the PINNED bit is ignored as pinning happens when the hrtimer is started
-
void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, enum hrtimer_mode mode)¶
Start a hrtimer sleeper timer
Parameters
struct hrtimer_sleeper * sl
sleeper to be started
enum hrtimer_mode mode
timer mode abs/rel
Description
Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context)
-
void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, clockid_t clock_id, enum hrtimer_mode mode)¶
initialize sleeper to the given clock
Parameters
struct hrtimer_sleeper * sl
sleeper to be initialized
clockid_t clock_id
the clock to be used
enum hrtimer_mode mode
timer mode abs/rel
-
int schedule_hrtimeout_range(ktime_t *expires, u64 delta, const enum hrtimer_mode mode)¶
sleep until timeout
Parameters
ktime_t * expires
timeout value (ktime_t)
u64 delta
slack in expires timeout (ktime_t)
const enum hrtimer_mode mode
timer mode
Description
Make the current task sleep until the given expiry time has elapsed. The routine will return immediately unless the current task state has been set (see set_current_state()).
The delta argument gives the kernel the freedom to schedule the actual wakeup to a time that is both power and performance friendly. The kernel give the normal best effort behavior for “expires**+**delta”, but may decide to fire the timer earlier, but no earlier than expires.
You can set the task state as follows -
TASK_UNINTERRUPTIBLE
- at least timeout time is guaranteed to
pass before the routine returns unless the current task is explicitly
woken up, (e.g. by wake_up_process()
).
TASK_INTERRUPTIBLE
- the routine may return early if a signal is
delivered to the current task or the current task is explicitly woken
up.
The current task state is guaranteed to be TASK_RUNNING when this routine returns.
Returns 0 when the timer has expired. If the task was woken before the timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or by an explicit wakeup, it returns -EINTR.
-
int schedule_hrtimeout(ktime_t *expires, const enum hrtimer_mode mode)¶
sleep until timeout
Parameters
ktime_t * expires
timeout value (ktime_t)
const enum hrtimer_mode mode
timer mode
Description
Make the current task sleep until the given expiry time has elapsed. The routine will return immediately unless the current task state has been set (see set_current_state()).
You can set the task state as follows -
TASK_UNINTERRUPTIBLE
- at least timeout time is guaranteed to
pass before the routine returns unless the current task is explicitly
woken up, (e.g. by wake_up_process()
).
TASK_INTERRUPTIBLE
- the routine may return early if a signal is
delivered to the current task or the current task is explicitly woken
up.
The current task state is guaranteed to be TASK_RUNNING when this routine returns.
Returns 0 when the timer has expired. If the task was woken before the timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or by an explicit wakeup, it returns -EINTR.
Workqueues and Kevents¶
- struct workqueue_attrs
A struct for workqueue attributes.
Definition
struct workqueue_attrs {
int nice;
cpumask_var_t cpumask;
bool no_numa;
};
Members
nice
nice level
cpumask
allowed CPUs
no_numa
disable NUMA affinity
Unlike other fields,
no_numa
isn’t a property of a worker_pool. It only modifies howapply_workqueue_attrs()
select pools and thus doesn’t participate in pool hash calculations or equality comparisons.
Description
This can be used to change attributes of an unbound workqueue.
- work_pending ( work)
Find out whether a work item is currently pending
Parameters
work
The work item in question
- delayed_work_pending ( w)
Find out whether a delayable work item is currently pending
Parameters
w
The work item in question
-
struct workqueue_struct *alloc_workqueue(const char *fmt, unsigned int flags, int max_active, ...)¶
allocate a workqueue
Parameters
const char * fmt
printf format for the name of the workqueue
unsigned int flags
WQ_* flags
int max_active
max in-flight work items, 0 for default remaining args: args for fmt
...
variable arguments
Description
Allocate a workqueue with the specified parameters. For detailed information on WQ_* flags, please refer to Documentation/core-api/workqueue.rst.
Return
Pointer to the allocated workqueue on success, NULL
on failure.
- alloc_ordered_workqueue ( fmt, flags, args)
allocate an ordered workqueue
Parameters
fmt
printf format for the name of the workqueue
flags
WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
args
args for fmt
Description
Allocate an ordered workqueue. An ordered workqueue executes at most one work item at any given time in the queued order. They are implemented as unbound workqueues with max_active of one.
Return
Pointer to the allocated workqueue on success, NULL
on failure.
-
bool queue_work(struct workqueue_struct *wq, struct work_struct *work)¶
queue work on a workqueue
Parameters
struct workqueue_struct * wq
workqueue to use
struct work_struct * work
work to queue
Description
Returns false
if work was already on a queue, true
otherwise.
We queue the work to the CPU on which it was submitted, but if the CPU dies it can be processed by another CPU.
Memory-ordering properties: If it returns true
, guarantees that all stores
preceding the call to queue_work()
in the program order will be visible from
the CPU which will execute work by the time such work executes, e.g.,
{ x is initially 0 }
CPU0 CPU1
WRITE_ONCE(x, 1); [ work is being executed ] r0 = queue_work(wq, work); r1 = READ_ONCE(x);
Forbids: r0 == true && r1 == 0
-
bool queue_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay)¶
queue work on a workqueue after delay
Parameters
struct workqueue_struct * wq
workqueue to use
struct delayed_work * dwork
delayable work to queue
unsigned long delay
number of jiffies to wait before queueing
Description
Equivalent to queue_delayed_work_on()
but tries to use the local CPU.
-
bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay)¶
modify delay of or queue a delayed work
Parameters
struct workqueue_struct * wq
workqueue to use
struct delayed_work * dwork
work to queue
unsigned long delay
number of jiffies to wait before queueing
Description
mod_delayed_work_on()
on local CPU.
-
bool schedule_work_on(int cpu, struct work_struct *work)¶
put work task on a specific cpu
Parameters
int cpu
cpu to put the work task on
struct work_struct * work
job to be done
Description
This puts a job on a specific cpu
-
bool schedule_work(struct work_struct *work)¶
put work task in global workqueue
Parameters
struct work_struct * work
job to be done
Description
Returns false
if work was already on the kernel-global workqueue and
true
otherwise.
This puts a job in the kernel-global workqueue if it was not already queued and leaves it in the same position on the kernel-global workqueue otherwise.
Shares the same memory-ordering properties of queue_work()
, cf. the
DocBook header of queue_work()
.
-
void flush_scheduled_work(void)¶
ensure that any scheduled work has run to completion.
Parameters
void
no arguments
Description
Forces execution of the kernel-global workqueue and blocks until its completion.
Think twice before calling this function! It’s very easy to get into trouble if you don’t take great care. Either of the following situations will lead to deadlock:
One of the work items currently on the workqueue needs to acquire a lock held by your code or its caller.
Your code is running in the context of a work routine.
They will be detected by lockdep when they occur, but the first might not occur very often. It depends on what work items are on the workqueue and what locks they need, which you have no control over.
In most situations flushing the entire workqueue is overkill; you merely
need to know that a particular work item isn’t queued and isn’t running.
In such cases you should use cancel_delayed_work_sync()
or
cancel_work_sync()
instead.
-
bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay)¶
queue work in global workqueue on CPU after delay
Parameters
int cpu
cpu to use
struct delayed_work * dwork
job to be done
unsigned long delay
number of jiffies to wait
Description
After waiting for a given time this puts a job in the kernel-global workqueue on the specified CPU.
-
bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)¶
put work task in global workqueue after delay
Parameters
struct delayed_work * dwork
job to be done
unsigned long delay
number of jiffies to wait or 0 for immediate execution
Description
After waiting for a given time this puts a job in the kernel-global workqueue.
-
bool queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)¶
queue work on specific cpu
Parameters
int cpu
CPU number to execute work on
struct workqueue_struct * wq
workqueue to use
struct work_struct * work
work to queue
Description
We queue the work to a specific CPU, the caller must ensure it can’t go away.
Return
false
if work was already on a queue, true
otherwise.
-
bool queue_work_node(int node, struct workqueue_struct *wq, struct work_struct *work)¶
queue work on a “random” cpu for a given NUMA node
Parameters
int node
NUMA node that we are targeting the work for
struct workqueue_struct * wq
workqueue to use
struct work_struct * work
work to queue
Description
We queue the work to a “random” CPU within a given NUMA node. The basic idea here is to provide a way to somehow associate work with a given NUMA node.
This function will only make a best effort attempt at getting this onto the right NUMA node. If no node is requested or the requested node is offline then we just fall back to standard queue_work behavior.
Currently the “random” CPU ends up being the first available CPU in the intersection of cpu_online_mask and the cpumask of the node, unless we are running on the node. In that case we just use the current CPU.
Return
false
if work was already on a queue, true
otherwise.
-
bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay)¶
queue work on specific CPU after delay
Parameters
int cpu
CPU number to execute work on
struct workqueue_struct * wq
workqueue to use
struct delayed_work * dwork
work to queue
unsigned long delay
number of jiffies to wait before queueing
Return
false
if work was already on a queue, true
otherwise. If
delay is zero and dwork is idle, it will be scheduled for immediate
execution.
-
bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq, struct delayed_work *dwork, unsigned long delay)¶
modify delay of or queue a delayed work on specific CPU
Parameters
int cpu
CPU number to execute work on
struct workqueue_struct * wq
workqueue to use
struct delayed_work * dwork
work to queue
unsigned long delay
number of jiffies to wait before queueing
Description
If dwork is idle, equivalent to queue_delayed_work_on()
; otherwise,
modify dwork’s timer so that it expires after delay. If delay is
zero, work is guaranteed to be scheduled immediately regardless of its
current state.
Return
false
if dwork was idle and queued, true
if dwork was
pending and its timer was modified.
This function is safe to call from any context including IRQ handler. See try_to_grab_pending() for details.
-
bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)¶
queue work after a RCU grace period
Parameters
struct workqueue_struct * wq
workqueue to use
struct rcu_work * rwork
work to queue
Return
false
if rwork was already pending, true
otherwise. Note
that a full RCU grace period is guaranteed only after a true
return.
While rwork is guaranteed to be executed after a false
return, the
execution may happen before a full RCU grace period has passed.
-
void flush_workqueue(struct workqueue_struct *wq)¶
ensure that any scheduled work has run to completion.
Parameters
struct workqueue_struct * wq
workqueue to flush
Description
This function sleeps until all work items which were queued on entry have finished execution, but it is not livelocked by new incoming ones.
-
void drain_workqueue(struct workqueue_struct *wq)¶
drain a workqueue
Parameters
struct workqueue_struct * wq
workqueue to drain
Description
Wait until the workqueue becomes empty. While draining is in progress, only chain queueing is allowed. IOW, only currently pending or running work items on wq can queue further work items on it. wq is flushed repeatedly until it becomes empty. The number of flushing is determined by the depth of chaining and should be relatively short. Whine if it takes too long.
-
bool flush_work(struct work_struct *work)¶
wait for a work to finish executing the last queueing instance
Parameters
struct work_struct * work
the work to flush
Description
Wait until work has finished execution. work is guaranteed to be idle on return if it hasn’t been requeued since flush started.
Return
true
if flush_work()
waited for the work to finish execution,
false
if it was already idle.
-
bool cancel_work_sync(struct work_struct *work)¶
cancel a work and wait for it to finish
Parameters
struct work_struct * work
the work to cancel
Description
Cancel work and wait for its execution to finish. This function can be used even if the work re-queues itself or migrates to another workqueue. On return from this function, work is guaranteed to be not pending or executing on any CPU.
cancel_work_sync(delayed_work->work
) must not be used for
delayed_work’s. Use cancel_delayed_work_sync()
instead.
The caller must ensure that the workqueue on which work was last queued can’t be destroyed before this function returns.
Return
true
if work was pending, false
otherwise.
-
bool flush_delayed_work(struct delayed_work *dwork)¶
wait for a dwork to finish executing the last queueing
Parameters
struct delayed_work * dwork
the delayed work to flush
Description
Delayed timer is cancelled and the pending work is queued for
immediate execution. Like flush_work()
, this function only
considers the last queueing instance of dwork.
Return
true
if flush_work()
waited for the work to finish execution,
false
if it was already idle.
-
bool flush_rcu_work(struct rcu_work *rwork)¶
wait for a rwork to finish executing the last queueing
Parameters
struct rcu_work * rwork
the rcu work to flush
Return
true
if flush_rcu_work()
waited for the work to finish execution,
false
if it was already idle.
-
bool cancel_delayed_work(struct delayed_work *dwork)¶
cancel a delayed work
Parameters
struct delayed_work * dwork
delayed_work to cancel
Description
Kill off a pending delayed_work.
Return
true
if dwork was pending and canceled; false
if it wasn’t
pending.
Note
The work callback function may still be running on return, unless
it returns true
and the work doesn’t re-arm itself. Explicitly flush or
use cancel_delayed_work_sync()
to wait on it.
This function is safe to call from any context including IRQ handler.
-
bool cancel_delayed_work_sync(struct delayed_work *dwork)¶
cancel a delayed work and wait for it to finish
Parameters
struct delayed_work * dwork
the delayed work cancel
Description
This is cancel_work_sync()
for delayed works.
Return
true
if dwork was pending, false
otherwise.
-
int execute_in_process_context(work_func_t fn, struct execute_work *ew)¶
reliably execute the routine with user context
Parameters
work_func_t fn
the function to execute
struct execute_work * ew
guaranteed storage for the execute work structure (must be available when the work executes)
Description
Executes the function immediately if process context is available, otherwise schedules the function for delayed execution.
Return
- 0 - function was executed
1 - function was scheduled for execution
-
void destroy_workqueue(struct workqueue_struct *wq)¶
safely terminate a workqueue
Parameters
struct workqueue_struct * wq
target workqueue
Description
Safely destroy a workqueue. All work currently pending will be done first.
-
void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)¶
adjust max_active of a workqueue
Parameters
struct workqueue_struct * wq
target workqueue
int max_active
new max_active value.
Description
Set max_active of wq to max_active.
Context
Don’t call from IRQ context.
-
struct work_struct *current_work(void)¶
retrieve
current
task’s work struct
Parameters
void
no arguments
Description
Determine if current
task is a workqueue worker and what it’s working on.
Useful to find out the context that the current
task is running in.
Return
work struct if current
task is a workqueue worker, NULL
otherwise.
-
bool workqueue_congested(int cpu, struct workqueue_struct *wq)¶
test whether a workqueue is congested
Parameters
int cpu
CPU in question
struct workqueue_struct * wq
target workqueue
Description
Test whether wq’s cpu workqueue for cpu is congested. There is no synchronization around this function and the test result is unreliable and only useful as advisory hints or for debugging.
If cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU. Note that both per-cpu and unbound workqueues may be associated with multiple pool_workqueues which have separate congested states. A workqueue being congested on one CPU doesn’t mean the workqueue is also contested on other CPUs / NUMA nodes.
Return
true
if congested, false
otherwise.
-
unsigned int work_busy(struct work_struct *work)¶
test whether a work is currently pending or running
Parameters
struct work_struct * work
the work to be tested
Description
Test whether work is currently pending or running. There is no synchronization around this function and the test result is unreliable and only useful as advisory hints or for debugging.
Return
OR’d bitmask of WORK_BUSY_* bits.
-
void set_worker_desc(const char *fmt, ...)¶
set description for the current work item
Parameters
const char * fmt
printf-style format string
...
arguments for the format string
Description
This function can be called by a running work function to describe what the work item is about. If the worker task gets dumped, this information will be printed out together to help debugging. The description can be at most WORKER_DESC_LEN including the trailing ‘0’.
-
long work_on_cpu(int cpu, long (*fn)(void*), void *arg)¶
run a function in thread context on a particular cpu
Parameters
int cpu
the cpu to run on
long (*)(void *) fn
the function to run
void * arg
the function arg
Description
It is up to the caller to ensure that the cpu doesn’t go offline. The caller must not hold any locks which would prevent fn from completing.
Return
The value fn returns.
-
long work_on_cpu_safe(int cpu, long (*fn)(void*), void *arg)¶
run a function in thread context on a particular cpu
Parameters
int cpu
the cpu to run on
long (*)(void *) fn
the function to run
void * arg
the function argument
Description
Disables CPU hotplug and calls work_on_cpu()
. The caller must not hold
any locks which would prevent fn from completing.
Return
The value fn returns.
Internal Functions¶
-
int wait_task_stopped(struct wait_opts *wo, int ptrace, struct task_struct *p)¶
Wait for
TASK_STOPPED
orTASK_TRACED
Parameters
struct wait_opts * wo
wait options
int ptrace
is the wait for ptrace
struct task_struct * p
task to wait for
Description
Handle sys_wait4() work for p
in state TASK_STOPPED
or TASK_TRACED
.
Context
read_lock(tasklist_lock
), which is released if return value is
non-zero. Also, grabs and releases p->sighand->siglock.
Return
0 if wait condition didn’t exist and search for other wait conditions should continue. Non-zero return, -errno on failure and p’s pid on success, implies that tasklist_lock is released and wait condition search should terminate.
-
bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)¶
set jobctl pending bits
Parameters
struct task_struct * task
target task
unsigned long mask
pending bits to set
Description
Clear mask from task->jobctl. mask must be subset of
JOBCTL_PENDING_MASK
| JOBCTL_STOP_CONSUME
| JOBCTL_STOP_SIGMASK
|
JOBCTL_TRAPPING
. If stop signo is being set, the existing signo is
cleared. If task is already being killed or exiting, this function
becomes noop.
Context
Must be called with task->sighand->siglock held.
Return
true
if mask is set, false
if made noop because task was dying.
-
void task_clear_jobctl_trapping(struct task_struct *task)¶
clear jobctl trapping bit
Parameters
struct task_struct * task
target task
Description
If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED. Clear it and wake up the ptracer. Note that we don’t need any further locking. task->siglock guarantees that task->parent points to the ptracer.
Context
Must be called with task->sighand->siglock held.
-
void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)¶
clear jobctl pending bits
Parameters
struct task_struct * task
target task
unsigned long mask
pending bits to clear
Description
Clear mask from task->jobctl. mask must be subset of
JOBCTL_PENDING_MASK
. If JOBCTL_STOP_PENDING
is being cleared, other
STOP bits are cleared together.
If clearing of mask leaves no stop or trap pending, this function calls
task_clear_jobctl_trapping()
.
Context
Must be called with task->sighand->siglock held.
-
bool task_participate_group_stop(struct task_struct *task)¶
participate in a group stop
Parameters
struct task_struct * task
task participating in a group stop
Description
task has JOBCTL_STOP_PENDING
set and is participating in a group stop.
Group stop states are cleared and the group stop count is consumed if
JOBCTL_STOP_CONSUME
was set. If the consumption completes the group
stop, the appropriate SIGNAL_* flags are set.
Context
Must be called with task->sighand->siglock held.
Return
true
if group stop completion should be notified to the parent, false
otherwise.
-
void ptrace_trap_notify(struct task_struct *t)¶
schedule trap to notify ptracer
Parameters
struct task_struct * t
tracee wanting to notify tracer
Description
This function schedules sticky ptrace trap which is cleared on the next TRAP_STOP to notify ptracer of an event. t must have been seized by ptracer.
If t is running, STOP trap will be taken. If trapped for STOP and ptracer is listening for events, tracee is woken up so that it can re-trap for the new event. If trapped otherwise, STOP trap will be eventually taken without returning to userland after the existing traps are finished by PTRACE_CONT.
Context
Must be called with task->sighand->siglock held.
-
void do_notify_parent_cldstop(struct task_struct *tsk, bool for_ptracer, int why)¶
notify parent of stopped/continued state change
Parameters
struct task_struct * tsk
task reporting the state change
bool for_ptracer
the notification is for ptracer
int why
CLD_{CONTINUED|STOPPED|TRAPPED} to report
Description
Notify tsk’s parent that the stopped/continued state has changed. If
for_ptracer is false
, tsk’s group leader notifies to its real parent.
If true
, tsk reports to tsk->parent which should be the ptracer.
Context
Must be called with tasklist_lock at least read locked.
-
bool do_signal_stop(int signr)¶
handle group stop for SIGSTOP and other stop signals
Parameters
int signr
signr causing group stop if initiating
Description
If JOBCTL_STOP_PENDING
is not set yet, initiate group stop with signr
and participate in it. If already set, participate in the existing
group stop. If participated in a group stop (and thus slept), true
is
returned with siglock released.
If ptraced, this function doesn’t handle stop itself. Instead,
JOBCTL_TRAP_STOP
is scheduled and false
is returned with siglock
untouched. The caller must ensure that INTERRUPT trap handling takes
places afterwards.
Context
Must be called with current->sighand->siglock held, which is released
on true
return.
Return
false
if group stop is already cancelled or ptrace trap is scheduled.
true
if participated in group stop.
-
void do_jobctl_trap(void)¶
take care of ptrace jobctl traps
Parameters
void
no arguments
Description
When PT_SEIZED, it’s used for both group stop and explicit
SEIZE/INTERRUPT traps. Both generate PTRACE_EVENT_STOP trap with
accompanying siginfo. If stopped, lower eight bits of exit_code contain
the stop signal; otherwise, SIGTRAP
.
When !PT_SEIZED, it’s used only for group stop trap with stop signal number as exit_code and no siginfo.
Context
Must be called with current->sighand->siglock held, which may be released and re-acquired before returning with intervening sleep.
-
void do_freezer_trap(void)¶
handle the freezer jobctl trap
Parameters
void
no arguments
Description
Puts the task into frozen state, if only the task is not about to quit. In this case it drops JOBCTL_TRAP_FREEZE.
Context
Must be called with current->sighand->siglock held, which is always released before returning.
-
void signal_delivered(struct ksignal *ksig, int stepping)¶
Parameters
struct ksignal * ksig
kernel signal struct
int stepping
nonzero if debugger single-step or block-step in use
Description
This function should be called when a signal has successfully been
delivered. It updates the blocked signals accordingly (ksig->ka.sa.sa_mask
is always blocked, and the signal itself is blocked unless SA_NODEFER
is set in ksig->ka.sa.sa_flags. Tracing is notified.
-
long sys_restart_syscall(void)¶
restart a system call
Parameters
void
no arguments
-
void set_current_blocked(sigset_t *newset)¶
change current->blocked mask
Parameters
sigset_t * newset
new mask
Description
It is wrong to change ->blocked directly, this helper should be used to ensure the process can’t miss a shared signal we are going to block.
- long sys_rt_sigprocmask (int how, sigset_t __user * nset, sigset_t __user * oset, size_t sigsetsize)
change the list of currently blocked signals
Parameters
int how
whether to add, remove, or set signals
sigset_t __user * nset
stores pending signals
sigset_t __user * oset
previous value of signal mask if non-null
size_t sigsetsize
size of sigset_t type
- long sys_rt_sigpending (sigset_t __user * uset, size_t sigsetsize)
examine a pending signal that has been raised while blocked
Parameters
sigset_t __user * uset
stores pending signals
size_t sigsetsize
size of sigset_t type or larger
-
int do_sigtimedwait(const sigset_t *which, kernel_siginfo_t *info, const struct timespec64 *ts)¶
wait for queued signals specified in which
Parameters
const sigset_t * which
queued signals to wait for
kernel_siginfo_t * info
if non-null, the signal’s siginfo is returned here
const struct timespec64 * ts
upper bound on process time suspension
- long sys_rt_sigtimedwait (const sigset_t __user * uthese, siginfo_t __user * uinfo, const struct __kernel_timespec __user * uts, size_t sigsetsize)
synchronously wait for queued signals specified in uthese
Parameters
const sigset_t __user * uthese
queued signals to wait for
siginfo_t __user * uinfo
if non-null, the signal’s siginfo is returned here
const struct __kernel_timespec __user * uts
upper bound on process time suspension
size_t sigsetsize
size of sigset_t type
-
long sys_kill(pid_t pid, int sig)¶
send a signal to a process
Parameters
pid_t pid
the PID of the process
int sig
signal to be sent
- long sys_pidfd_send_signal (int pidfd, int sig, siginfo_t __user * info, unsigned int flags)
Signal a process through a pidfd
Parameters
int pidfd
file descriptor of the process
int sig
signal to send
siginfo_t __user * info
signal info
unsigned int flags
future flags
Description
The syscall currently only signals via PIDTYPE_PID which covers kill(<positive-pid>, <signal>. It does not signal threads or process groups. In order to extend the syscall to threads and process groups the flags argument should be used. In essence, the flags argument will determine what is signaled and not the file descriptor itself. Put in other words, grouping is a property of the flags argument not a property of the file descriptor.
Return
0 on success, negative errno on failure
-
long sys_tgkill(pid_t tgid, pid_t pid, int sig)¶
send signal to one specific thread
Parameters
pid_t tgid
the thread group ID of the thread
pid_t pid
the PID of the thread
int sig
signal to be sent
Description
This syscall also checks the tgid and returns -ESRCH even if the PID exists but it’s not belonging to the target process anymore. This method solves the problem of threads exiting and PIDs getting reused.
-
long sys_tkill(pid_t pid, int sig)¶
send signal to one specific task
Parameters
pid_t pid
the PID of the task
int sig
signal to be sent
Description
Send a signal to only one task, even if it’s a CLONE_THREAD task.
- long sys_rt_sigqueueinfo (pid_t pid, int sig, siginfo_t __user * uinfo)
send signal information to a signal
Parameters
pid_t pid
the PID of the thread
int sig
signal to be sent
siginfo_t __user * uinfo
signal info to be sent
- long sys_sigpending (old_sigset_t __user * uset)
examine pending signals
Parameters
old_sigset_t __user * uset
where mask of pending signal is returned
- long sys_sigprocmask (int how, old_sigset_t __user * nset, old_sigset_t __user * oset)
examine and change blocked signals
Parameters
int how
whether to add, remove, or set signals
old_sigset_t __user * nset
signals to add or remove (if non-null)
old_sigset_t __user * oset
previous value of signal mask if non-null
Description
Some platforms have their own version with special arguments; others support only sys_rt_sigprocmask.
- long sys_rt_sigaction (int sig, const struct sigaction __user * act, struct sigaction __user * oact, size_t sigsetsize)
alter an action taken by a process
Parameters
int sig
signal to be sent
const struct sigaction __user * act
new sigaction
struct sigaction __user * oact
used to save the previous sigaction
size_t sigsetsize
size of sigset_t type
- long sys_rt_sigsuspend (sigset_t __user * unewset, size_t sigsetsize)
replace the signal mask for a value with the unewset value until a signal is received
Parameters
sigset_t __user * unewset
new signal mask value
size_t sigsetsize
size of sigset_t type
- kthread_create ( threadfn, data, namefmt, arg)
create a kthread on the current node
Parameters
threadfn
the function to run in the thread
data
data pointer for threadfn()
namefmt
printf-style format string for the thread name
arg
arguments for namefmt.
Description
This macro will create a kthread on the current node, leaving it in
the stopped state. This is just a helper for kthread_create_on_node()
;
see the documentation there for more details.
- kthread_run ( threadfn, data, namefmt, ...)
create and wake a thread.
Parameters
threadfn
the function to run until signal_pending(current).
data
data ptr for threadfn.
namefmt
printf-style name for the thread.
...
variable arguments
Description
Convenient wrapper for kthread_create() followed by
wake_up_process()
. Returns the kthread or ERR_PTR(-ENOMEM).
-
bool kthread_should_stop(void)¶
should this kthread return now?
Parameters
void
no arguments
Description
When someone calls kthread_stop()
on your kthread, it will be woken
and this will return true. You should then return, and your return
value will be passed through to kthread_stop()
.
-
bool kthread_should_park(void)¶
should this kthread park now?
Parameters
void
no arguments
Description
When someone calls kthread_park()
on your kthread, it will be woken
and this will return true. You should then do the necessary
cleanup and call kthread_parkme()
Similar to kthread_should_stop()
, but this keeps the thread alive
and in a park position. kthread_unpark()
“restarts” the thread and
calls the thread function again.
-
bool kthread_freezable_should_stop(bool *was_frozen)¶
should this freezable kthread return now?
Parameters
bool * was_frozen
optional out parameter, indicates whether
current
was frozen
Description
kthread_should_stop()
for freezable kthreads, which will enter
refrigerator if necessary. This function is safe from kthread_stop()
/
freezer deadlock and freezable kthreads should use this function instead
of calling try_to_freeze() directly.
-
struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), void *data, int node, const char namefmt, ...)¶
create a kthread.
Parameters
int (*)(void *data) threadfn
the function to run until signal_pending(current).
void * data
data ptr for threadfn.
int node
task and thread structures for the thread are allocated on this node
const char namefmt
printf-style name for the thread.
...
variable arguments
Description
This helper function creates and names a kernel
thread. The thread will be stopped: use wake_up_process()
to start
it. See also kthread_run(). The new thread has SCHED_NORMAL policy and
is affine to all CPUs.
If thread is going to be bound on a particular cpu, give its node
in node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
When woken, the thread will run threadfn() with data as its
argument. threadfn() can either call do_exit() directly if it is a
standalone thread for which no one will call kthread_stop()
, or
return when ‘kthread_should_stop()
’ is true (which means
kthread_stop()
has been called). The return value should be zero
or a negative error number; it will be passed to kthread_stop()
.
Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
-
void kthread_bind(struct task_struct *p, unsigned int cpu)¶
bind a just-created kthread to a cpu.
Parameters
struct task_struct * p
thread created by kthread_create().
unsigned int cpu
cpu (might not be online, must be possible) for k to run on.
Description
This function is equivalent to set_cpus_allowed(), except that cpu doesn’t need to be online, and the thread must be stopped (i.e., just returned from kthread_create()).
-
void kthread_unpark(struct task_struct *k)¶
unpark a thread created by kthread_create().
Parameters
struct task_struct * k
thread created by kthread_create().
Description
Sets kthread_should_park()
for k to return false, wakes it, and
waits for it to return. If the thread is marked percpu then its
bound to the cpu again.
-
int kthread_park(struct task_struct *k)¶
park a thread created by kthread_create().
Parameters
struct task_struct * k
thread created by kthread_create().
Description
Sets kthread_should_park()
for k to return true, wakes it, and
waits for it to return. This can also be called after kthread_create()
instead of calling wake_up_process()
: the thread will park without
calling threadfn().
Returns 0 if the thread is parked, -ENOSYS if the thread exited. If called by the kthread itself just the park bit is set.
-
int kthread_stop(struct task_struct *k)¶
stop a thread created by kthread_create().
Parameters
struct task_struct * k
thread created by kthread_create().
Description
Sets kthread_should_stop()
for k to return true, wakes it, and
waits for it to exit. This can also be called after kthread_create()
instead of calling wake_up_process()
: the thread will exit without
calling threadfn().
If threadfn() may call do_exit() itself, the caller must ensure task_struct can’t go away.
Returns the result of threadfn(), or -EINTR
if wake_up_process()
was never called.
-
int kthread_worker_fn(void *worker_ptr)¶
kthread function to process kthread_worker
Parameters
void * worker_ptr
pointer to initialized kthread_worker
Description
This function implements the main cycle of kthread worker. It processes
work_list until it is stopped with kthread_stop()
. It sleeps when the queue
is empty.
The works are not allowed to keep any locks, disable preemption or interrupts when they finish. There is defined a safe point for freezing when one work finishes and before a new one is started.
Also the works must not be handled by more than one worker at the same time,
see also kthread_queue_work()
.
-
struct kthread_worker *kthread_create_worker(unsigned int flags, const char namefmt, ...)¶
create a kthread worker
Parameters
unsigned int flags
flags modifying the default behavior of the worker
const char namefmt
printf-style name for the kthread worker (task).
...
variable arguments
Description
Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) when the needed structures could not get allocated, and ERR_PTR(-EINTR) when the worker was SIGKILLed.
-
struct kthread_worker *kthread_create_worker_on_cpu(int cpu, unsigned int flags, const char namefmt, ...)¶
create a kthread worker and bind it it to a given CPU and the associated NUMA node.
Parameters
int cpu
CPU number
unsigned int flags
flags modifying the default behavior of the worker
const char namefmt
printf-style name for the kthread worker (task).
...
variable arguments
Description
Use a valid CPU number if you want to bind the kthread worker to the given CPU and the associated NUMA node.
A good practice is to add the cpu number also into the worker name.
For example, use kthread_create_worker_on_cpu(cpu, “helper/d
”, cpu).
Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) when the needed structures could not get allocated, and ERR_PTR(-EINTR) when the worker was SIGKILLed.
-
bool kthread_queue_work(struct kthread_worker *worker, struct kthread_work *work)¶
queue a kthread_work
Parameters
struct kthread_worker * worker
target kthread_worker
struct kthread_work * work
kthread_work to queue
Description
Queue work to work processor task for async execution. task
must have been created with kthread_worker_create(). Returns true
if work was successfully queued, false
if it was already pending.
Reinitialize the work if it needs to be used by another worker. For example, when the worker was stopped and started again.
-
void kthread_delayed_work_timer_fn(struct timer_list *t)¶
callback that queues the associated kthread delayed work when the timer expires.
Parameters
struct timer_list * t
pointer to the expired timer
Description
The format of the function is defined by struct timer_list. It should have been called from irqsafe timer with irq already off.
-
bool kthread_queue_delayed_work(struct kthread_worker *worker, struct kthread_delayed_work *dwork, unsigned long delay)¶
queue the associated kthread work after a delay.
Parameters
struct kthread_worker * worker
target kthread_worker
struct kthread_delayed_work * dwork
kthread_delayed_work to queue
unsigned long delay
number of jiffies to wait before queuing
Description
If the work has not been pending it starts a timer that will queue the work after the given delay. If delay is zero, it queues the work immediately.
Return
false
if the work has already been pending. It means that
either the timer was running or the work was queued. It returns true
otherwise.
-
void kthread_flush_work(struct kthread_work *work)¶
flush a kthread_work
Parameters
struct kthread_work * work
work to flush
Description
If work is queued or executing, wait for it to finish execution.
-
bool kthread_mod_delayed_work(struct kthread_worker *worker, struct kthread_delayed_work *dwork, unsigned long delay)¶
modify delay of or queue a kthread delayed work
Parameters
struct kthread_worker * worker
kthread worker to use
struct kthread_delayed_work * dwork
kthread delayed work to queue
unsigned long delay
number of jiffies to wait before queuing
Description
If dwork is idle, equivalent to kthread_queue_delayed_work()
. Otherwise,
modify dwork’s timer so that it expires after delay. If delay is zero,
work is guaranteed to be queued immediately.
Return
true
if dwork was pending and its timer was modified,
false
otherwise.
A special case is when the work is being canceled in parallel.
It might be caused either by the real kthread_cancel_delayed_work_sync()
or yet another kthread_mod_delayed_work()
call. We let the other command
win and return false
here. The caller is supposed to synchronize these
operations a reasonable way.
This function is safe to call from any context including IRQ handler.
See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
for details.
-
bool kthread_cancel_work_sync(struct kthread_work *work)¶
cancel a kthread work and wait for it to finish
Parameters
struct kthread_work * work
the kthread work to cancel
Description
Cancel work and wait for its execution to finish. This function can be used even if the work re-queues itself. On return from this function, work is guaranteed to be not pending or executing on any CPU.
kthread_cancel_work_sync(delayed_work->work
) must not be used for
delayed_work’s. Use kthread_cancel_delayed_work_sync()
instead.
The caller must ensure that the worker on which work was last queued can’t be destroyed before this function returns.
Return
true
if work was pending, false
otherwise.
-
bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)¶
cancel a kthread delayed work and wait for it to finish.
Parameters
struct kthread_delayed_work * dwork
the kthread delayed work to cancel
Description
This is kthread_cancel_work_sync()
for delayed works.
Return
true
if dwork was pending, false
otherwise.
-
void kthread_flush_worker(struct kthread_worker *worker)¶
flush all current works on a kthread_worker
Parameters
struct kthread_worker * worker
worker to flush
Description
Wait until all currently executing or pending works on worker are finished.
-
void kthread_destroy_worker(struct kthread_worker *worker)¶
destroy a kthread worker
Parameters
struct kthread_worker * worker
worker to be destroyed
Description
Flush and destroy worker. The simple flush is enough because the kthread worker API is used only in trivial scenarios. There are no multi-step state machines needed.
-
void kthread_associate_blkcg(struct cgroup_subsys_state *css)¶
associate blkcg to current kthread
Parameters
struct cgroup_subsys_state * css
the cgroup info
Description
Current thread must be a kthread. The thread is running jobs on behalf of other threads. In some cases, we expect the jobs attach cgroup info of original threads instead of that of current thread. This function stores original thread’s cgroup info in current kthread context for later retrieval.
-
struct cgroup_subsys_state *kthread_blkcg(void)¶
get associated blkcg css of current kthread
Parameters
void
no arguments
Description
Current thread must be a kthread.
Reference counting¶
- struct refcount_struct
variant of atomic_t specialized for reference counts
Definition
struct refcount_struct {
atomic_t refs;
};
Members
refs
atomic_t counter field
Description
The counter saturates at REFCOUNT_SATURATED and will not move once there. This avoids wrapping the counter and causing ‘spurious’ use-after-free bugs.
-
void refcount_set(refcount_t *r, int n)¶
set a refcount’s value
Parameters
refcount_t * r
the refcount
int n
value to which the refcount will be set
-
unsigned int refcount_read(const refcount_t *r)¶
get a refcount’s value
Parameters
const refcount_t * r
the refcount
Return
the refcount’s value
-
bool refcount_add_not_zero(int i, refcount_t *r)¶
add a value to a refcount unless it is 0
Parameters
int i
the value to add to the refcount
refcount_t * r
the refcount
Description
Will saturate at REFCOUNT_SATURATED and WARN.
Provides no memory ordering, it is assumed the caller has guaranteed the object memory to be stable (RCU, etc.). It does provide a control dependency and thereby orders future stores. See the comment on top.
Use of this function is not recommended for the normal reference counting
use case in which references are taken and released one at a time. In these
cases, refcount_inc()
, or one of its variants, should instead be used to
increment a reference count.
Return
false if the passed refcount is 0, true otherwise
-
void refcount_add(int i, refcount_t *r)¶
add a value to a refcount
Parameters
int i
the value to add to the refcount
refcount_t * r
the refcount
Description
Similar to atomic_add(), but will saturate at REFCOUNT_SATURATED and WARN.
Provides no memory ordering, it is assumed the caller has guaranteed the object memory to be stable (RCU, etc.). It does provide a control dependency and thereby orders future stores. See the comment on top.
Use of this function is not recommended for the normal reference counting
use case in which references are taken and released one at a time. In these
cases, refcount_inc()
, or one of its variants, should instead be used to
increment a reference count.
-
bool refcount_inc_not_zero(refcount_t *r)¶
increment a refcount unless it is 0
Parameters
refcount_t * r
the refcount to increment
Description
Similar to atomic_inc_not_zero(), but will saturate at REFCOUNT_SATURATED and WARN.
Provides no memory ordering, it is assumed the caller has guaranteed the object memory to be stable (RCU, etc.). It does provide a control dependency and thereby orders future stores. See the comment on top.
Return
true if the increment was successful, false otherwise
-
void refcount_inc(refcount_t *r)¶
increment a refcount
Parameters
refcount_t * r
the refcount to increment
Description
Similar to atomic_inc(), but will saturate at REFCOUNT_SATURATED and WARN.
Provides no memory ordering, it is assumed the caller already has a reference on the object.
Will WARN if the refcount is 0, as this represents a possible use-after-free condition.
-
bool refcount_sub_and_test(int i, refcount_t *r)¶
subtract from a refcount and test if it is 0
Parameters
int i
amount to subtract from the refcount
refcount_t * r
the refcount
Description
Similar to atomic_dec_and_test(), but it will WARN, return false and ultimately leak on underflow and will fail to decrement when saturated at REFCOUNT_SATURATED.
Provides release memory ordering, such that prior loads and stores are done before, and provides an acquire ordering on success such that free() must come after.
Use of this function is not recommended for the normal reference counting
use case in which references are taken and released one at a time. In these
cases, refcount_dec()
, or one of its variants, should instead be used to
decrement a reference count.
Return
true if the resulting refcount is 0, false otherwise
-
bool refcount_dec_and_test(refcount_t *r)¶
decrement a refcount and test if it is 0
Parameters
refcount_t * r
the refcount
Description
Similar to atomic_dec_and_test(), it will WARN on underflow and fail to decrement when saturated at REFCOUNT_SATURATED.
Provides release memory ordering, such that prior loads and stores are done before, and provides an acquire ordering on success such that free() must come after.
Return
true if the resulting refcount is 0, false otherwise
-
void refcount_dec(refcount_t *r)¶
decrement a refcount
Parameters
refcount_t * r
the refcount
Description
Similar to atomic_dec(), it will WARN on underflow and fail to decrement when saturated at REFCOUNT_SATURATED.
Provides release memory ordering, such that prior loads and stores are done before.
-
bool refcount_dec_if_one(refcount_t *r)¶
decrement a refcount if it is 1
Parameters
refcount_t * r
the refcount
Description
No atomic_t counterpart, it attempts a 1 -> 0 transition and returns the success thereof.
Like all decrement operations, it provides release memory order and provides a control dependency.
It can be used like a try-delete operator; this explicit case is provided and not cmpxchg in generic, because that would allow implementing unsafe operations.
Return
true if the resulting refcount is 0, false otherwise
-
bool refcount_dec_not_one(refcount_t *r)¶
decrement a refcount if it is not 1
Parameters
refcount_t * r
the refcount
Description
No atomic_t counterpart, it decrements unless the value is 1, in which case it will return false.
Was often done like: atomic_add_unless(var
, -1, 1)
Return
true if the decrement operation was successful, false otherwise
-
bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock)¶
return holding mutex if able to decrement refcount to 0
Parameters
refcount_t * r
the refcount
struct mutex * lock
the mutex to be locked
Description
Similar to atomic_dec_and_mutex_lock()
, it will WARN on underflow and fail
to decrement when saturated at REFCOUNT_SATURATED.
Provides release memory ordering, such that prior loads and stores are done before, and provides a control dependency such that free() must come after. See the comment on top.
Return
- true and hold mutex if able to decrement refcount to 0, false
otherwise
-
bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock)¶
return holding spinlock if able to decrement refcount to 0
Parameters
refcount_t * r
the refcount
spinlock_t * lock
the spinlock to be locked
Description
Similar to atomic_dec_and_lock(), it will WARN on underflow and fail to decrement when saturated at REFCOUNT_SATURATED.
Provides release memory ordering, such that prior loads and stores are done before, and provides a control dependency such that free() must come after. See the comment on top.
Return
- true and hold spinlock if able to decrement refcount to 0, false
otherwise
-
bool refcount_dec_and_lock_irqsave(refcount_t *r, spinlock_t *lock, unsigned long *flags)¶
return holding spinlock with disabled interrupts if able to decrement refcount to 0
Parameters
refcount_t * r
the refcount
spinlock_t * lock
the spinlock to be locked
unsigned long * flags
saved IRQ-flags if the is acquired
Description
Same as refcount_dec_and_lock()
above except that the spinlock is acquired
with disabled interupts.
Return
- true and hold spinlock if able to decrement refcount to 0, false
otherwise
Atomics¶
-
int arch_atomic_read(const atomic_t *v)¶
read atomic variable
Parameters
const atomic_t * v
pointer of type atomic_t
Description
Atomically reads the value of v.
-
void arch_atomic_set(atomic_t *v, int i)¶
set atomic variable
Parameters
atomic_t * v
pointer of type atomic_t
int i
required value
Description
Atomically sets the value of v to i.
-
void arch_atomic_add(int i, atomic_t *v)¶
add integer to atomic variable
Parameters
int i
integer value to add
atomic_t * v
pointer of type atomic_t
Description
Atomically adds i to v.
-
void arch_atomic_sub(int i, atomic_t *v)¶
subtract integer from atomic variable
Parameters
int i
integer value to subtract
atomic_t * v
pointer of type atomic_t
Description
Atomically subtracts i from v.
-
bool arch_atomic_sub_and_test(int i, atomic_t *v)¶
subtract value from variable and test result
Parameters
int i
integer value to subtract
atomic_t * v
pointer of type atomic_t
Description
Atomically subtracts i from v and returns true if the result is zero, or false for all other cases.
-
void arch_atomic_inc(atomic_t *v)¶
increment atomic variable
Parameters
atomic_t * v
pointer of type atomic_t
Description
Atomically increments v by 1.
-
void arch_atomic_dec(atomic_t *v)¶
decrement atomic variable
Parameters
atomic_t * v
pointer of type atomic_t
Description
Atomically decrements v by 1.
-
bool arch_atomic_dec_and_test(atomic_t *v)¶
decrement and test
Parameters
atomic_t * v
pointer of type atomic_t
Description
Atomically decrements v by 1 and returns true if the result is 0, or false for all other cases.
-
bool arch_atomic_inc_and_test(atomic_t *v)¶
increment and test
Parameters
atomic_t * v
pointer of type atomic_t
Description
Atomically increments v by 1 and returns true if the result is zero, or false for all other cases.
-
bool arch_atomic_add_negative(int i, atomic_t *v)¶
add and test if negative
Parameters
int i
integer value to add
atomic_t * v
pointer of type atomic_t
Description
Atomically adds i to v and returns true if the result is negative, or false when result is greater than or equal to zero.
-
int arch_atomic_add_return(int i, atomic_t *v)¶
add integer and return
Parameters
int i
integer value to add
atomic_t * v
pointer of type atomic_t
Description
Atomically adds i to v and returns i + v
-
int arch_atomic_sub_return(int i, atomic_t *v)¶
subtract integer and return
Parameters
int i
integer value to subtract
atomic_t * v
pointer of type atomic_t
Description
Atomically subtracts i from v and returns v - i
Kernel objects manipulation¶
-
char *kobject_get_path(struct kobject *kobj, gfp_t gfp_mask)¶
Allocate memory and fill in the path for kobj.
Parameters
struct kobject * kobj
kobject in question, with which to build the path
gfp_t gfp_mask
the allocation type used to allocate the path
Return
The newly allocated memory, caller must free with kfree()
.
-
int kobject_set_name(struct kobject *kobj, const char *fmt, ...)¶
Set the name of a kobject.
Parameters
struct kobject * kobj
struct kobject to set the name of
const char * fmt
format string used to build the name
...
variable arguments
Description
This sets the name of the kobject. If you have already added the
kobject to the system, you must call kobject_rename()
in order to
change the name of the kobject.
-
void kobject_init(struct kobject *kobj, struct kobj_type *ktype)¶
Initialize a kobject structure.
Parameters
struct kobject * kobj
pointer to the kobject to initialize
struct kobj_type * ktype
pointer to the ktype for this kobject.
Description
This function will properly initialize a kobject such that it can then
be passed to the kobject_add()
call.
After this function is called, the kobject MUST be cleaned up by a call
to kobject_put()
, not by a call to kfree directly to ensure that all of
the memory is cleaned up properly.
-
int kobject_add(struct kobject *kobj, struct kobject *parent, const char *fmt, ...)¶
The main kobject add function.
Parameters
struct kobject * kobj
the kobject to add
struct kobject * parent
pointer to the parent of the kobject.
const char * fmt
format to name the kobject with.
...
variable arguments
Description
The kobject name is set and added to the kobject hierarchy in this function.
If parent is set, then the parent of the kobj will be set to it. If parent is NULL, then the parent of the kobj will be set to the kobject associated with the kset assigned to this kobject. If no kset is assigned to the kobject, then the kobject will be located in the root of the sysfs tree.
Note, no “add” uevent will be created with this call, the caller should set up all of the necessary sysfs files for the object and then call kobject_uevent() with the UEVENT_ADD parameter to ensure that userspace is properly notified of this kobject’s creation.
Return
- If this function returns an error, kobject_put() must be
called to properly clean up the memory associated with the object. Under no instance should the kobject that is passed to this function be directly freed with a call to
kfree()
, that can leak memory.If this function returns success,
kobject_put()
must also be called in order to properly clean up the memory associated with the object.In short, once this function is called,
kobject_put()
MUST be called when the use of the object is finished in order to properly free everything.
-
int kobject_init_and_add(struct kobject *kobj, struct kobj_type *ktype, struct kobject *parent, const char *fmt, ...)¶
Initialize a kobject structure and add it to the kobject hierarchy.
Parameters
struct kobject * kobj
pointer to the kobject to initialize
struct kobj_type * ktype
pointer to the ktype for this kobject.
struct kobject * parent
pointer to the parent of this kobject.
const char * fmt
the name of the kobject.
...
variable arguments
Description
This function combines the call to kobject_init()
and kobject_add()
.
If this function returns an error, kobject_put()
must be called to
properly clean up the memory associated with the object. This is the
same type of error handling after a call to kobject_add()
and kobject
lifetime rules are the same here.
-
int kobject_rename(struct kobject *kobj, const char *new_name)¶
Change the name of an object.
Parameters
struct kobject * kobj
object in question.
const char * new_name
object’s new name
Description
It is the responsibility of the caller to provide mutual exclusion between two different calls of kobject_rename on the same kobject and to ensure that new_name is valid and won’t conflict with other kobjects.
-
int kobject_move(struct kobject *kobj, struct kobject *new_parent)¶
Move object to another parent.
Parameters
struct kobject * kobj
object in question.
struct kobject * new_parent
object’s new parent (can be NULL)
-
void kobject_del(struct kobject *kobj)¶
Unlink kobject from hierarchy.
Parameters
struct kobject * kobj
object.
Description
This is the function that should be called to delete an object
successfully added via kobject_add()
.
-
struct kobject *kobject_get(struct kobject *kobj)¶
Increment refcount for object.
Parameters
struct kobject * kobj
object.
-
void kobject_put(struct kobject *kobj)¶
Decrement refcount for object.
Parameters
struct kobject * kobj
object.
Description
Decrement the refcount, and if 0, call kobject_cleanup().
-
struct kobject *kobject_create_and_add(const char *name, struct kobject *parent)¶
Create a struct kobject dynamically and register it with sysfs.
Parameters
const char * name
the name for the kobject
struct kobject * parent
the parent kobject of this kobject, if any.
Description
This function creates a kobject structure dynamically and registers it
with sysfs. When you are finished with this structure, call
kobject_put()
and the structure will be dynamically freed when
it is no longer being used.
If the kobject was not able to be created, NULL will be returned.
-
int kset_register(struct kset *k)¶
Initialize and add a kset.
Parameters
struct kset * k
kset.
-
void kset_unregister(struct kset *k)¶
Remove a kset.
Parameters
struct kset * k
kset.
Parameters
struct kset * kset
kset we’re looking in.
const char * name
object’s name.
Description
Lock kset via kset->subsys, and iterate over kset->list, looking for a matching kobject. If matching object is found take a reference and return the object.
-
struct kset *kset_create_and_add(const char *name, const struct kset_uevent_ops *uevent_ops, struct kobject *parent_kobj)¶
Create a struct kset dynamically and add it to sysfs.
Parameters
const char * name
the name for the kset
const struct kset_uevent_ops * uevent_ops
a struct kset_uevent_ops for the kset
struct kobject * parent_kobj
the parent kobject of this kset, if any.
Description
This function creates a kset structure dynamically and registers it
with sysfs. When you are finished with this structure, call
kset_unregister()
and the structure will be dynamically freed when it
is no longer being used.
If the kset was not able to be created, NULL will be returned.
Kernel utility functions¶
- REPEAT_BYTE ( x)
repeat the value x multiple times as an unsigned long value
Parameters
x
value to repeat
NOTE
x is not checked for > 0xff; larger values produce odd results.
- ARRAY_SIZE ( arr)
get the number of elements in array arr
Parameters
arr
array to be sized
- round_up ( x, y)
round up to next specified power of 2
Parameters
x
the value to round
y
multiple to round up to (must be a power of 2)
Description
Rounds x up to next multiple of y (which must be a power of 2). To perform arbitrary rounding up, use roundup() below.
- round_down ( x, y)
round down to next specified power of 2
Parameters
x
the value to round
y
multiple to round down to (must be a power of 2)
Description
Rounds x down to next multiple of y (which must be a power of 2). To perform arbitrary rounding down, use rounddown() below.
- roundup ( x, y)
round up to the next specified multiple
Parameters
x
the value to up
y
multiple to round up to
Description
Rounds x up to next multiple of y. If y will always be a power of 2, consider using the faster round_up().
- rounddown ( x, y)
round down to next specified multiple
Parameters
x
the value to round
y
multiple to round down to
Description
Rounds x down to next multiple of y. If y will always be a power of 2, consider using the faster round_down().
- upper_32_bits ( n)
return bits 32-63 of a number
Parameters
n
the number we’re accessing
Description
A basic shift-right of a 64- or 32-bit quantity. Use this to suppress the “right shift count >= width of type” warning when that quantity is 32-bits.
- lower_32_bits ( n)
return bits 0-31 of a number
Parameters
n
the number we’re accessing
- might_sleep ()
annotation for functions that can sleep
Parameters
Description
this macro will print a stack trace if it is executed in an atomic context (spinlock, irq-handler, …). Additional sections where blocking is not allowed can be annotated with non_block_start() and non_block_end() pairs.
This is a useful debugging help to be able to catch problems early and not be bitten later when the calling function happens to sleep when it is not supposed to.
- cant_sleep ()
annotation for functions that cannot sleep
Parameters
Description
this macro will print a stack trace if it is executed with preemption enabled
- non_block_start ()
annotate the start of section where sleeping is prohibited
Parameters
Description
This is on behalf of the oom reaper, specifically when it is calling the mmu
notifiers. The problem is that if the notifier were to block on, for example,
mutex_lock()
and if the process which holds that mutex were to perform a
sleeping memory allocation, the oom reaper is now blocked on completion of
that memory allocation. Other blocking calls like wait_event() pose similar
issues.
- non_block_end ()
annotate the end of section where sleeping is prohibited
Parameters
Description
Closes a section opened by non_block_start().
- abs ( x)
return absolute value of an argument
Parameters
x
the value. If it is unsigned type, it is converted to signed type first. char is treated as if it was signed (regardless of whether it really is) but the macro’s return type is preserved as char.
Return
an absolute value of x.
-
u32 reciprocal_scale(u32 val, u32 ep_ro)¶
“scale” a value into range [0, ep_ro)
Parameters
u32 val
value
u32 ep_ro
right open interval endpoint
Description
Perform a “reciprocal multiplication” in order to “scale” a value into range [0, ep_ro), where the upper interval endpoint is right-open. This is useful, e.g. for accessing a index of an array containing ep_ro elements, for example. Think of it as sort of modulus, only that the result isn’t that of modulo. ;) Note that if initial input is a small value, then result will return 0.
Return
a result based on val in interval [0, ep_ro).
-
int kstrtoul(const char *s, unsigned int base, unsigned long *res)¶
convert a string to an unsigned long
Parameters
const char * s
The start of the string. The string must be null-terminated, and may also include a single newline before its terminating null. The first character may also be a plus sign, but not a minus sign.
unsigned int base
The number base to use. The maximum supported base is 16. If base is given as 0, then the base of the string is automatically detected with the conventional semantics - If it begins with 0x the number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be parsed as an octal number. Otherwise it will be parsed as a decimal.
unsigned long * res
Where to write the result of the conversion on success.
Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for the simple_strtoull. Return code must be checked.
-
int kstrtol(const char *s, unsigned int base, long *res)¶
convert a string to a long
Parameters
const char * s
The start of the string. The string must be null-terminated, and may also include a single newline before its terminating null. The first character may also be a plus sign or a minus sign.
unsigned int base
The number base to use. The maximum supported base is 16. If base is given as 0, then the base of the string is automatically detected with the conventional semantics - If it begins with 0x the number will be parsed as a hexadecimal (case insensitive), if it otherwise begins with 0, it will be parsed as an octal number. Otherwise it will be parsed as a decimal.
long * res
Where to write the result of the conversion on success.
Description
Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error. Used as a replacement for the simple_strtoull. Return code must be checked.
- trace_printk ( fmt, ...)
printf formatting in the ftrace buffer
Parameters
fmt
the printf format for printing
...
variable arguments
Note
- __trace_printk is an internal function for trace_printk() and
the ip is passed in via the trace_printk() macro.
This function allows a kernel developer to debug fast path sections that printk is not appropriate for. By scattering in various printk like tracing in the code, a developer can quickly see where problems are occurring.
This is intended as a debugging tool for the developer only. Please refrain from leaving trace_printks scattered around in your code. (Extra memory is used for special buffers that are allocated when trace_printk() is used.)
A little optimization trick is done here. If there’s only one argument, there’s no need to scan the string for printf formats. The trace_puts() will suffice. But how can we take advantage of using trace_puts() when trace_printk() has only one argument? By stringifying the args and checking the size we can tell whether or not there are args. __stringify((__VA_ARGS__)) will turn into “()0” with a size of 3 when there are no args, anything else will be bigger. All we need to do is define a string to this, and then take its size and compare to 3. If it’s bigger, use do_trace_printk() otherwise, optimize it to trace_puts(). Then just let gcc optimize the rest.
- trace_puts ( str)
write a string into the ftrace buffer
Parameters
str
the string to record
Note
- __trace_bputs is an internal function for trace_puts and
the ip is passed in via the trace_puts macro.
This is similar to trace_printk() but is made for those really fast paths that a developer wants the least amount of “Heisenbug” effects, where the processing of the print format is still too much.
This function allows a kernel developer to debug fast path sections that printk is not appropriate for. By scattering in various printk like tracing in the code, a developer can quickly see where problems are occurring.
This is intended as a debugging tool for the developer only. Please refrain from leaving trace_puts scattered around in your code. (Extra memory is used for special buffers that are allocated when trace_puts() is used.)
Return
- 0 if nothing was written, positive # if string was.
(1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
- min ( x, y)
return minimum of two values of the same or compatible types
Parameters
x
first value
y
second value
- max ( x, y)
return maximum of two values of the same or compatible types
Parameters
x
first value
y
second value
- min3 ( x, y, z)
return minimum of three values
Parameters
x
first value
y
second value
z
third value
- max3 ( x, y, z)
return maximum of three values
Parameters
x
first value
y
second value
z
third value
- min_not_zero ( x, y)
return the minimum that is _not_ zero, unless both are zero
Parameters
x
value1
y
value2
- clamp ( val, lo, hi)
return a value clamped to a given range with strict typechecking
Parameters
val
current value
lo
lowest allowable value
hi
highest allowable value
Description
This macro does strict typechecking of lo/hi to make sure they are of the same type as val. See the unnecessary pointer comparisons.
- min_t ( type, x, y)
return minimum of two values, using the specified type
Parameters
type
data type to use
x
first value
y
second value
- max_t ( type, x, y)
return maximum of two values, using the specified type
Parameters
type
data type to use
x
first value
y
second value
- clamp_t ( type, val, lo, hi)
return a value clamped to a given range using a given type
Parameters
type
the type of variable to use
val
current value
lo
minimum allowable value
hi
maximum allowable value
Description
This macro does no typechecking and uses temporary variables of type type to make all the comparisons.
- clamp_val ( val, lo, hi)
return a value clamped to a given range using val’s type
Parameters
val
current value
lo
minimum allowable value
hi
maximum allowable value
Description
This macro does no typechecking and uses temporary variables of whatever type the input argument val is. This is useful when val is an unsigned type and lo and hi are literals that will otherwise be assigned a signed integer type.
- swap ( a, b)
swap values of a and b
Parameters
a
first value
b
second value
- container_of ( ptr, type, member)
cast a member of a structure out to the containing structure
Parameters
ptr
the pointer to the member.
type
the type of the container struct this is embedded in.
member
the name of the member within the struct.
- container_of_safe ( ptr, type, member)
cast a member of a structure out to the containing structure
Parameters
ptr
the pointer to the member.
type
the type of the container struct this is embedded in.
member
the name of the member within the struct.
Description
If IS_ERR_OR_NULL(ptr), ptr is returned unchanged.
- __visible int printk (const char * fmt, ...)
print a kernel message
Parameters
const char * fmt
format string
...
variable arguments
Description
This is printk(). It can be called from any context. We want it to work.
We try to grab the console_lock. If we succeed, it’s easy - we log the
output and call the console drivers. If we fail to get the semaphore, we
place the output into the log buffer and return. The current holder of
the console_sem will notice the new output in console_unlock()
; and will
send it to the consoles before releasing the lock.
One effect of this deferred printing is that code which calls printk() and then changes console_loglevel may break. This is because console_loglevel is inspected when the actual printing occurs.
See also: printf(3)
See the vsnprintf()
documentation for format string extensions over C99.
-
void console_lock(void)¶
lock the console system for exclusive use.
Parameters
void
no arguments
Description
Acquires a lock which guarantees that the caller has exclusive access to the console system and the console_drivers list.
Can sleep, returns nothing.
-
int console_trylock(void)¶
try to lock the console system for exclusive use.
Parameters
void
no arguments
Description
Try to acquire a lock which guarantees that the caller has exclusive access to the console system and the console_drivers list.
returns 1 on success, and 0 on failure to acquire the lock.
-
void console_unlock(void)¶
unlock the console system
Parameters
void
no arguments
Description
Releases the console_lock which the caller holds on the console system and the console driver list.
While the console_lock was held, console output may have been buffered
by printk(). If this is the case, console_unlock()
; emits
the output prior to releasing the lock.
If there is output waiting, we wake /dev/kmsg and syslog() users.
console_unlock()
; may be called from any context.
-
void console_conditional_schedule(void)¶
yield the CPU if required
Parameters
void
no arguments
Description
If the console code is currently allowed to sleep, and if this CPU should yield the CPU to another task, do so here.
Must be called within console_lock()
;.
-
bool printk_timed_ratelimit(unsigned long *caller_jiffies, unsigned int interval_msecs)¶
caller-controlled printk ratelimiting
Parameters
unsigned long * caller_jiffies
pointer to caller’s state
unsigned int interval_msecs
minimum interval between prints
Description
printk_timed_ratelimit()
returns true if more than interval_msecs
milliseconds have elapsed since the last time printk_timed_ratelimit()
returned true.
-
int kmsg_dump_register(struct kmsg_dumper *dumper)¶
register a kernel log dumper.
Parameters
struct kmsg_dumper * dumper
pointer to the kmsg_dumper structure
Description
Adds a kernel log dumper to the system. The dump callback in the
structure will be called when the kernel oopses or panics and must be
set. Returns zero on success and -EINVAL
or -EBUSY
otherwise.
-
int kmsg_dump_unregister(struct kmsg_dumper *dumper)¶
unregister a kmsg dumper.
Parameters
struct kmsg_dumper * dumper
pointer to the kmsg_dumper structure
Description
Removes a dump device from the system. Returns zero on success and
-EINVAL
otherwise.
-
bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog, char *line, size_t size, size_t *len)¶
retrieve one kmsg log line
Parameters
struct kmsg_dumper * dumper
registered kmsg dumper
bool syslog
include the “<4>” prefixes
char * line
buffer to copy the line to
size_t size
maximum size of the buffer
size_t * len
length of line placed into buffer
Description
Start at the beginning of the kmsg buffer, with the oldest kmsg record, and copy one record into the provided buffer.
Consecutive calls will return the next available record moving towards the end of the buffer with the youngest messages.
A return value of FALSE indicates that there are no more records to read.
-
bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog, char *buf, size_t size, size_t *len)¶
copy kmsg log lines
Parameters
struct kmsg_dumper * dumper
registered kmsg dumper
bool syslog
include the “<4>” prefixes
char * buf
buffer to copy the line to
size_t size
maximum size of the buffer
size_t * len
length of line placed into buffer
Description
Start at the end of the kmsg buffer and fill the provided buffer with as many of the the youngest kmsg records that fit into it. If the buffer is large enough, all available kmsg records will be copied with a single call.
Consecutive calls will fill the buffer with the next block of available older records, not including the earlier retrieved ones.
A return value of FALSE indicates that there are no more records to read.
-
void kmsg_dump_rewind(struct kmsg_dumper *dumper)¶
reset the interator
Parameters
struct kmsg_dumper * dumper
registered kmsg dumper
Description
Reset the dumper’s iterator so that kmsg_dump_get_line()
and
kmsg_dump_get_buffer()
can be called again and used multiple
times within the same dumper.dump() callback.
-
void panic(const char *fmt, ...)¶
halt the system
Parameters
const char * fmt
The text string to print
...
variable arguments
Description
Display a message, then perform cleanups.
This function never returns.
-
void add_taint(unsigned flag, enum lockdep_ok lockdep_ok)¶
Parameters
unsigned flag
one of the TAINT_* constants.
enum lockdep_ok lockdep_ok
whether lock debugging is still OK.
Description
If something bad has gone wrong, you’ll want lockdebug_ok = false, but for some notewortht-but-not-corrupting cases, it can be set to true.
- bool notrace rcu_is_watching ( void)
see if RCU thinks that the current CPU is not idle
Parameters
void
no arguments
Description
Return true if RCU is watching the running CPU, which means that this CPU can safely enter RCU read-side critical sections. In other words, if the current CPU is not in its idle loop or is in an interrupt or NMI handler, return true.
-
void call_rcu(struct rcu_head *head, rcu_callback_t func)¶
Queue an RCU callback for invocation after a grace period.
Parameters
struct rcu_head * head
structure to be used for queueing the RCU updates.
rcu_callback_t func
actual callback function to be invoked after the grace period
Description
The callback function will be invoked some time after a full grace
period elapses, in other words after all pre-existing RCU read-side
critical sections have completed. However, the callback function
might well execute concurrently with RCU read-side critical sections
that started after call_rcu()
was invoked. RCU read-side critical
sections are delimited by rcu_read_lock()
and rcu_read_unlock()
, and
may be nested. In addition, regions of code across which interrupts,
preemption, or softirqs have been disabled also serve as RCU read-side
critical sections. This includes hardware interrupt handlers, softirq
handlers, and NMI handlers.
Note that all CPUs must agree that the grace period extended beyond
all pre-existing RCU read-side critical section. On systems with more
than one CPU, this means that when “func()” is invoked, each CPU is
guaranteed to have executed a full memory barrier since the end of its
last RCU read-side critical section whose beginning preceded the call
to call_rcu()
. It also means that each CPU executing an RCU read-side
critical section that continues beyond the start of “func()” must have
executed a memory barrier after the call_rcu()
but before the beginning
of that RCU read-side critical section. Note that these guarantees
include CPUs that are offline, idle, or executing in user mode, as
well as CPUs that are executing in the kernel.
Furthermore, if CPU A invoked call_rcu()
and CPU B invoked the
resulting RCU callback function “func()”, then both CPU A and CPU B are
guaranteed to execute a full memory barrier during the time interval
between the call to call_rcu()
and the invocation of “func()” – even
if CPU A and CPU B are the same CPU (but again only if the system has
more than one CPU).
-
void synchronize_rcu(void)¶
wait until a grace period has elapsed.
Parameters
void
no arguments
Description
Control will return to the caller some time after a full grace
period has elapsed, in other words after all currently executing RCU
read-side critical sections have completed. Note, however, that
upon return from synchronize_rcu()
, the caller might well be executing
concurrently with new RCU read-side critical sections that began while
synchronize_rcu()
was waiting. RCU read-side critical sections are
delimited by rcu_read_lock()
and rcu_read_unlock()
, and may be nested.
In addition, regions of code across which interrupts, preemption, or
softirqs have been disabled also serve as RCU read-side critical
sections. This includes hardware interrupt handlers, softirq handlers,
and NMI handlers.
Note that this guarantee implies further memory-ordering guarantees.
On systems with more than one CPU, when synchronize_rcu()
returns,
each CPU is guaranteed to have executed a full memory barrier since
the end of its last RCU read-side critical section whose beginning
preceded the call to synchronize_rcu()
. In addition, each CPU having
an RCU read-side critical section that extends beyond the return from
synchronize_rcu()
is guaranteed to have executed a full memory barrier
after the beginning of synchronize_rcu()
and before the beginning of
that RCU read-side critical section. Note that these guarantees include
CPUs that are offline, idle, or executing in user mode, as well as CPUs
that are executing in the kernel.
Furthermore, if CPU A invoked synchronize_rcu()
, which returned
to its caller on CPU B, then both CPU A and CPU B are guaranteed
to have executed a full memory barrier during the execution of
synchronize_rcu()
– even if CPU A and CPU B are the same CPU (but
again only if the system has more than one CPU).
-
unsigned long get_state_synchronize_rcu(void)¶
Snapshot current RCU state
Parameters
void
no arguments
Description
Returns a cookie that is used by a later call to cond_synchronize_rcu()
to determine whether or not a full grace period has elapsed in the
meantime.
-
void cond_synchronize_rcu(unsigned long oldstate)¶
Conditionally wait for an RCU grace period
Parameters
unsigned long oldstate
return value from earlier call to
get_state_synchronize_rcu()
Description
If a full RCU grace period has elapsed since the earlier call to
get_state_synchronize_rcu()
, just return. Otherwise, invoke
synchronize_rcu()
to wait for a full grace period.
Yes, this function does not take counter wrap into account. But counter wrap is harmless. If the counter wraps, we have waited for more than 2 billion grace periods (and way more on a 64-bit system!), so waiting for one additional grace period should be just fine.
-
void rcu_barrier(void)¶
Wait until all in-flight
call_rcu()
callbacks complete.
Parameters
void
no arguments
Description
Note that this primitive does not necessarily wait for an RCU grace period
to complete. For example, if there are no RCU callbacks queued anywhere
in the system, then rcu_barrier()
is within its rights to return
immediately, without waiting for anything, much less an RCU grace period.
-
void rcu_expedite_gp(void)¶
Expedite future RCU grace periods
Parameters
void
no arguments
Description
After a call to this function, future calls to synchronize_rcu()
and
friends act as the corresponding synchronize_rcu_expedited()
function
had instead been called.
-
void rcu_unexpedite_gp(void)¶
Cancel prior
rcu_expedite_gp()
invocation
Parameters
void
no arguments
Description
Undo a prior call to rcu_expedite_gp()
. If all prior calls to
rcu_expedite_gp()
are undone by a subsequent call to rcu_unexpedite_gp()
,
and if the rcu_expedited sysfs/boot parameter is not set, then all
subsequent calls to synchronize_rcu()
and friends will return to
their normal non-expedited behavior.
-
int rcu_read_lock_held(void)¶
might we be in RCU read-side critical section?
Parameters
void
no arguments
Description
If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, this assumes we are in an RCU read-side critical section unless it can prove otherwise. This is useful for debug checks in functions that require that they be called within an RCU read-side critical section.
Checks debug_lockdep_rcu_enabled() to prevent false positives during boot and while lockdep is disabled.
Note that rcu_read_lock()
and the matching rcu_read_unlock()
must
occur in the same context, for example, it is illegal to invoke
rcu_read_unlock()
in process context if the matching rcu_read_lock()
was invoked from within an irq handler.
Note that rcu_read_lock()
is disallowed if the CPU is either idle or
offline from an RCU perspective, so check for those as well.
-
int rcu_read_lock_bh_held(void)¶
might we be in RCU-bh read-side critical section?
Parameters
void
no arguments
Description
Check for bottom half being disabled, which covers both the
CONFIG_PROVE_RCU and not cases. Note that if someone uses
rcu_read_lock_bh()
, but then later enables BH, lockdep (if enabled)
will show the situation. This is useful for debug checks in functions
that require that they be called within an RCU read-side critical
section.
Check debug_lockdep_rcu_enabled() to prevent false positives during boot.
Note that rcu_read_lock_bh()
is disallowed if the CPU is either idle or
offline from an RCU perspective, so check for those as well.
-
void wakeme_after_rcu(struct rcu_head *head)¶
Callback function to awaken a task after grace period
Parameters
struct rcu_head * head
Pointer to rcu_head member within rcu_synchronize structure
Description
Awaken the corresponding task now that a grace period has elapsed.
-
void init_rcu_head_on_stack(struct rcu_head *head)¶
initialize on-stack rcu_head for debugobjects
Parameters
struct rcu_head * head
pointer to rcu_head structure to be initialized
Description
This function informs debugobjects of a new rcu_head structure that has been allocated as an auto variable on the stack. This function is not required for rcu_head structures that are statically defined or that are dynamically allocated on the heap. This function has no effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
-
void destroy_rcu_head_on_stack(struct rcu_head *head)¶
destroy on-stack rcu_head for debugobjects
Parameters
struct rcu_head * head
pointer to rcu_head structure to be initialized
Description
This function informs debugobjects that an on-stack rcu_head structure
is about to go out of scope. As with init_rcu_head_on_stack()
, this
function is not required for rcu_head structures that are statically
defined or that are dynamically allocated on the heap. Also as with
init_rcu_head_on_stack()
, this function has no effect for
!CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds.
-
void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)¶
Queue an RCU for invocation task-based grace period
Parameters
struct rcu_head * rhp
structure to be used for queueing the RCU updates.
rcu_callback_t func
actual callback function to be invoked after the grace period
Description
The callback function will be invoked some time after a full grace
period elapses, in other words after all currently executing RCU
read-side critical sections have completed. call_rcu_tasks()
assumes
that the read-side critical sections end at a voluntary context
switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
or transition to usermode execution. As such, there are no read-side
primitives analogous to rcu_read_lock()
and rcu_read_unlock()
because
this primitive is intended to determine that all tasks have passed
through a safe state, not so much for data-strcuture synchronization.
See the description of call_rcu()
for more detailed information on
memory ordering guarantees.
-
void synchronize_rcu_tasks(void)¶
wait until an rcu-tasks grace period has elapsed.
Parameters
void
no arguments
Description
Control will return to the caller some time after a full rcu-tasks
grace period has elapsed, in other words after all currently
executing rcu-tasks read-side critical sections have elapsed. These
read-side critical sections are delimited by calls to schedule(),
cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
to synchronize_rcu_tasks()
, and (in theory, anyway) cond_resched().
This is a very specialized primitive, intended only for a few uses in
tracing and other situations requiring manipulation of function
preambles and profiling hooks. The synchronize_rcu_tasks()
function
is not (yet) intended for heavy use from multiple CPUs.
Note that this guarantee implies further memory-ordering guarantees.
On systems with more than one CPU, when synchronize_rcu_tasks()
returns,
each CPU is guaranteed to have executed a full memory barrier since the
end of its last RCU-tasks read-side critical section whose beginning
preceded the call to synchronize_rcu_tasks()
. In addition, each CPU
having an RCU-tasks read-side critical section that extends beyond
the return from synchronize_rcu_tasks()
is guaranteed to have executed
a full memory barrier after the beginning of synchronize_rcu_tasks()
and before the beginning of that RCU-tasks read-side critical section.
Note that these guarantees include CPUs that are offline, idle, or
executing in user mode, as well as CPUs that are executing in the kernel.
Furthermore, if CPU A invoked synchronize_rcu_tasks()
, which returned
to its caller on CPU B, then both CPU A and CPU B are guaranteed
to have executed a full memory barrier during the execution of
synchronize_rcu_tasks()
– even if CPU A and CPU B are the same CPU
(but again only if the system has more than one CPU).
-
void rcu_barrier_tasks(void)¶
Wait for in-flight
call_rcu_tasks()
callbacks.
Parameters
void
no arguments
Description
Although the current implementation is guaranteed to wait, it is not obligated to, for example, if there are no pending callbacks.
-
size_t array_size(size_t a, size_t b)¶
Calculate size of 2-dimensional array.
Parameters
size_t a
dimension one
size_t b
dimension two
Description
Calculates size of 2-dimensional array: a * b.
Return
number of bytes needed to represent the array or SIZE_MAX on overflow.
-
size_t array3_size(size_t a, size_t b, size_t c)¶
Calculate size of 3-dimensional array.
Parameters
size_t a
dimension one
size_t b
dimension two
size_t c
dimension three
Description
Calculates size of 3-dimensional array: a * b * c.
Return
number of bytes needed to represent the array or SIZE_MAX on overflow.
- struct_size ( p, member, n)
Calculate size of structure with trailing array.
Parameters
p
Pointer to the structure.
member
Name of the array member.
n
Number of elements in the array.
Description
Calculates size of memory needed for structure p followed by an array of n member elements.
Return
number of bytes needed or SIZE_MAX on overflow.
Device Resource Management¶
-
void *devres_alloc_node(dr_release_t release, size_t size, gfp_t gfp, int nid)¶
Allocate device resource data
Parameters
dr_release_t release
Release function devres will be associated with
size_t size
Allocation size
gfp_t gfp
Allocation flags
int nid
NUMA node
Description
Allocate devres of size bytes. The allocated area is zeroed, then associated with release. The returned pointer can be passed to other devres_*() functions.
Return
Pointer to allocated devres on success, NULL on failure.
-
void devres_for_each_res(struct device *dev, dr_release_t release, dr_match_t match, void *match_data, void (*fn)(struct device*, void*, void*), void *data)¶
Resource iterator
Parameters
struct device * dev
Device to iterate resource from
dr_release_t release
Look for resources associated with this release function
dr_match_t match
Match function (optional)
void * match_data
Data for the match function
void (*)(struct device *, void *, void *) fn
Function to be called for each matched resource.
void * data
Data for fn, the 3rd parameter of fn
Description
Call fn for each devres of dev which is associated with release and for which match returns 1.
Return
void
-
void devres_free(void *res)¶
Free device resource data
Parameters
void * res
Pointer to devres data to free
Description
Free devres created with devres_alloc().
-
void devres_add(struct device *dev, void *res)¶
Register device resource
Parameters
struct device * dev
Device to add resource to
void * res
Resource to register
Description
Register devres res to dev. res should have been allocated using devres_alloc(). On driver detach, the associated release function will be invoked and devres will be freed automatically.
-
void *devres_find(struct device *dev, dr_release_t release, dr_match_t match, void *match_data)¶
Find device resource
Parameters
struct device * dev
Device to lookup resource from
dr_release_t release
Look for resources associated with this release function
dr_match_t match
Match function (optional)
void * match_data
Data for the match function
Description
Find the latest devres of dev which is associated with release and for which match returns 1. If match is NULL, it’s considered to match all.
Return
Pointer to found devres, NULL if not found.
-
void *devres_get(struct device *dev, void *new_res, dr_match_t match, void *match_data)¶
Find devres, if non-existent, add one atomically
Parameters
struct device * dev
Device to lookup or add devres for
void * new_res
Pointer to new initialized devres to add if not found
dr_match_t match
Match function (optional)
void * match_data
Data for the match function
Description
Find the latest devres of dev which has the same release function as new_res and for which match return 1. If found, new_res is freed; otherwise, new_res is added atomically.
Return
Pointer to found or added devres.
-
void *devres_remove(struct device *dev, dr_release_t release, dr_match_t match, void *match_data)¶
Find a device resource and remove it
Parameters
struct device * dev
Device to find resource from
dr_release_t release
Look for resources associated with this release function
dr_match_t match
Match function (optional)
void * match_data
Data for the match function
Description
Find the latest devres of dev associated with release and for which match returns 1. If match is NULL, it’s considered to match all. If found, the resource is removed atomically and returned.
Return
Pointer to removed devres on success, NULL if not found.
-
int devres_destroy(struct device *dev, dr_release_t release, dr_match_t match, void *match_data)¶
Find a device resource and destroy it
Parameters
struct device * dev
Device to find resource from
dr_release_t release
Look for resources associated with this release function
dr_match_t match
Match function (optional)
void * match_data
Data for the match function
Description
Find the latest devres of dev associated with release and for which match returns 1. If match is NULL, it’s considered to match all. If found, the resource is removed atomically and freed.
Note that the release function for the resource will not be called, only the devres-allocated data will be freed. The caller becomes responsible for freeing any other data.
Return
0 if devres is found and freed, -ENOENT if not found.
-
int devres_release(struct device *dev, dr_release_t release, dr_match_t match, void *match_data)¶
Find a device resource and destroy it, calling release
Parameters
struct device * dev
Device to find resource from
dr_release_t release
Look for resources associated with this release function
dr_match_t match
Match function (optional)
void * match_data
Data for the match function
Description
Find the latest devres of dev associated with release and for which match returns 1. If match is NULL, it’s considered to match all. If found, the resource is removed atomically, the release function called and the resource freed.
Return
0 if devres is found and freed, -ENOENT if not found.
-
void *devres_open_group(struct device *dev, void *id, gfp_t gfp)¶
Open a new devres group
Parameters
struct device * dev
Device to open devres group for
void * id
Separator ID
gfp_t gfp
Allocation flags
Description
Open a new devres group for dev with id. For id, using a pointer to an object which won’t be used for another group is recommended. If id is NULL, address-wise unique ID is created.
Return
ID of the new group, NULL on failure.
-
void devres_close_group(struct device *dev, void *id)¶
Close a devres group
Parameters
struct device * dev
Device to close devres group for
void * id
ID of target group, can be NULL
Description
Close the group identified by id. If id is NULL, the latest open group is selected.
-
void devres_remove_group(struct device *dev, void *id)¶
Remove a devres group
Parameters
struct device * dev
Device to remove group for
void * id
ID of target group, can be NULL
Description
Remove the group identified by id. If id is NULL, the latest open group is selected. Note that removing a group doesn’t affect any other resources.
-
int devres_release_group(struct device *dev, void *id)¶
Release resources in a devres group
Parameters
struct device * dev
Device to release group for
void * id
ID of target group, can be NULL
Description
Release all resources in the group identified by id. If id is NULL, the latest open group is selected. The selected group and groups properly nested inside the selected group are removed.
Return
The number of released non-group resources.
-
int devm_add_action(struct device *dev, void (*action)(void*), void *data)¶
add a custom action to list of managed resources
Parameters
struct device * dev
Device that owns the action
void (*)(void *) action
Function that should be called
void * data
Pointer to data passed to action implementation
Description
This adds a custom action to the list of managed resources so that it gets executed as part of standard resource unwinding.
-
void devm_remove_action(struct device *dev, void (*action)(void*), void *data)¶
removes previously added custom action
Parameters
struct device * dev
Device that owns the action
void (*)(void *) action
Function implementing the action
void * data
Pointer to data passed to action implementation
Description
Removes instance of action previously added by devm_add_action()
.
Both action and data should match one of the existing entries.
-
void devm_release_action(struct device *dev, void (*action)(void*), void *data)¶
release previously added custom action
Parameters
struct device * dev
Device that owns the action
void (*)(void *) action
Function implementing the action
void * data
Pointer to data passed to action implementation
Description
Releases and removes instance of action previously added by
devm_add_action()
. Both action and data should match one of the
existing entries.
-
void *devm_kmalloc(struct device *dev, size_t size, gfp_t gfp)¶
Resource-managed kmalloc
Parameters
struct device * dev
Device to allocate memory for
size_t size
Allocation size
gfp_t gfp
Allocation gfp flags
Description
Managed kmalloc. Memory allocated with this function is automatically freed on driver detach. Like all other devres resources, guaranteed alignment is unsigned long long.
Return
Pointer to allocated memory on success, NULL on failure.
-
char *devm_kstrdup(struct device *dev, const char *s, gfp_t gfp)¶
Allocate resource managed space and copy an existing string into that.
Parameters
struct device * dev
Device to allocate memory for
const char * s
the string to duplicate
gfp_t gfp
the GFP mask used in the
devm_kmalloc()
call when allocating memory
Return
Pointer to allocated string on success, NULL on failure.
-
const char *devm_kstrdup_const(struct device *dev, const char *s, gfp_t gfp)¶
resource managed conditional string duplication
Parameters
struct device * dev
device for which to duplicate the string
const char * s
the string to duplicate
gfp_t gfp
the GFP mask used in the
kmalloc()
call when allocating memory
Description
Strings allocated by devm_kstrdup_const will be automatically freed when the associated device is detached.
Return
Source string if it is in .rodata section otherwise it falls back to devm_kstrdup.
-
char *devm_kvasprintf(struct device *dev, gfp_t gfp, const char *fmt, va_list ap)¶
Allocate resource managed space and format a string into that.
Parameters
struct device * dev
Device to allocate memory for
gfp_t gfp
the GFP mask used in the
devm_kmalloc()
call when allocating memoryconst char * fmt
The printf()-style format string
va_list ap
Arguments for the format string
Return
Pointer to allocated string on success, NULL on failure.
-
char *devm_kasprintf(struct device *dev, gfp_t gfp, const char *fmt, ...)¶
Allocate resource managed space and format a string into that.
Parameters
struct device * dev
Device to allocate memory for
gfp_t gfp
the GFP mask used in the
devm_kmalloc()
call when allocating memoryconst char * fmt
The printf()-style format string
...
Arguments for the format string
Return
Pointer to allocated string on success, NULL on failure.
-
void devm_kfree(struct device *dev, const void *p)¶
Resource-managed kfree
Parameters
struct device * dev
Device this memory belongs to
const void * p
Memory to free
Description
Free memory allocated with devm_kmalloc()
.
-
void *devm_kmemdup(struct device *dev, const void *src, size_t len, gfp_t gfp)¶
Resource-managed kmemdup
Parameters
struct device * dev
Device this memory belongs to
const void * src
Memory region to duplicate
size_t len
Memory region length
gfp_t gfp
GFP mask to use
Description
Duplicate region of a memory using resource managed kmalloc
-
unsigned long devm_get_free_pages(struct device *dev, gfp_t gfp_mask, unsigned int order)¶
Resource-managed __get_free_pages
Parameters
struct device * dev
Device to allocate memory for
gfp_t gfp_mask
Allocation gfp flags
unsigned int order
Allocation size is (1 << order) pages
Description
Managed get_free_pages. Memory allocated with this function is automatically freed on driver detach.
Return
Address of allocated memory on success, 0 on failure.
-
void devm_free_pages(struct device *dev, unsigned long addr)¶
Resource-managed free_pages
Parameters
struct device * dev
Device this memory belongs to
unsigned long addr
Memory to free
Description
Free memory allocated with devm_get_free_pages()
. Unlike free_pages,
there is no need to supply the order.
- void __percpu * __devm_alloc_percpu (struct device * dev, size_t size, size_t align)
Resource-managed alloc_percpu
Parameters
struct device * dev
Device to allocate per-cpu memory for
size_t size
Size of per-cpu memory to allocate
size_t align
Alignment of per-cpu memory to allocate
Description
Managed alloc_percpu. Per-cpu memory allocated with this function is automatically freed on driver detach.
Return
Pointer to allocated memory on success, NULL on failure.
- void devm_free_percpu (struct device * dev, void __percpu * pdata)
Resource-managed free_percpu
Parameters
struct device * dev
Device this memory belongs to
void __percpu * pdata
Per-cpu memory to free
Description
Free memory allocated with devm_alloc_percpu().